
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2126594/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS. Astrophysical Journal, Supplement Series, 2014, 211, 19.	7.7	615
2	Multi-scale initial conditions for cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2101-2121.	4.4	591
3	Properties of dark matter haloes in clusters, filaments, sheets and voids. Monthly Notices of the Royal Astronomical Society, 2007, 375, 489-499.	4.4	387
4	The evolution of dark matter halo properties in clusters, filaments, sheets and voids. Monthly Notices of the Royal Astronomical Society, 2007, 381, 41-51.	4.4	235
5	Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2087-2111.	4.4	221
6	Disruption of dark matter substructure: fact or fiction?. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3043-3066.	4.4	213
7	Tracing the cosmic web. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1195-1217.	4.4	187
8	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. Astrophysical Journal, Supplement Series, 2014, 210, 14.	7.7	185
9	The Aspen–Amsterdam void finder comparison project. Monthly Notices of the Royal Astronomical Society, 2008, 387, 933-944.	4.4	162
10	Halo mass function and scale-dependent bias from N-body simulations with non-Gaussian initial conditions. Monthly Notices of the Royal Astronomical Society, 2010, 402, 191-206.	4.4	145
11	The warm dark matter halo mass function below the cut-off scale. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3337-3347.	4.4	134
12	Tracing the dark matter sheet in phase space. Monthly Notices of the Royal Astronomical Society, 2012, 427, 61-76.	4.4	132
13	Tidal effects and the environment dependence of halo assembly. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1742-1756.	4.4	124
14	Coplanar streams, pancakes and angular-momentum exchange in high-z disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1732-1749.	4.4	108
15	How to zoom: bias, contamination and Lagrange volumes in multimass cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1894-1908.	4.4	105
16	MERGERS AND MASS ACCRETION FOR INFALLING HALOS BOTH END WELL OUTSIDE CLUSTER VIRIAL RADII. Astrophysical Journal, 2014, 787, 156.	4.5	101
17	HALO-TO-HALO SIMILARITY AND SCATTER IN THE VELOCITY DISTRIBUTION OF DARK MATTER. Astrophysical Journal, 2013, 764, 35.	4.5	90
18	The properties of cosmic velocity fields. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3920-3937.	4.4	79

#	Article	IF	CITATIONS
19	A new approach to simulating collisionless dark matter fluids. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1171-1191.	4.4	78
20	Halo assembly bias and the tidal anisotropy of the local halo environment. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3631-3647.	4.4	73
21	THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD. Astrophysical Journal Letters, 2010, 714, L47-L51.	8.3	70
22	An adaptively refined phase–space element method for cosmological simulations and collisionless dynamics. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1115-1133.	4.4	64
23	Large-scale dark matter simulations. Living Reviews in Solar Physics, 2022, 8, 1.	11.4	57
24	The large-scale orientations of disc galaxies. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	53
25	Earth-mass haloes and the emergence of NFW density profiles. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4687-4701.	4.4	53
26	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. Astrophysical Journal, 2013, 763, 70.	4.5	52
27	Accurate initial conditions for cosmological <i>N</i> -body simulations: minimizing truncation and discreteness errors. Monthly Notices of the Royal Astronomical Society, 2020, 500, 663-683.	4.4	48
28	Cosmic web anisotropy is the primary indicator of halo assembly bias. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2977-2996.	4.4	46
29	How closely do baryons follow dark matter on large scales?. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1756-1764.	4.4	44
30	ENZO: An Adaptive Mesh Refinement Code for Astrophysics (Version 2.6). Journal of Open Source Software, 2019, 4, 1636.	4.6	44
31	Virial scaling of galaxies in clusters: bright to faint is cool to hot. Monthly Notices of the Royal Astronomical Society, 2013, 436, 460-469.	4.4	42
32	RHAPSODY. II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS. Astrophysical Journal, 2013, 767, 23.	4.5	39
33	DASH: a library of dynamical subhalo evolution. Monthly Notices of the Royal Astronomical Society, 2019, 485, 189-202.	4.4	33
34	Rhapsody-G simulations: galaxy clusters as baryonic closed boxes and the covariance between hot gas and galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1982-1991.	4.4	31
35	POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT. Astrophysical Journal, 2013, 773, 108.	4.5	28
36	What sets the central structure of dark matter haloes?. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4339-4359.	4.4	27

#	Article	IF	CITATIONS
37	The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5442-5452.	4.4	26
38	Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4408-4427.	4.4	25
39	A Novel Approach to Visualizing Dark Matter Simulations. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 2078-2087.	4.4	23
40	Large-scale velocity dispersion and the cosmic web. Monthly Notices of the Royal Astronomical Society, 2019, 487, 228-245.	4.4	20
41	The locations of halo formation and the peaks formalism. Monthly Notices of the Royal Astronomical Society, 2014, 438, 878-899.	4.4	18
42	Accelerated orbital decay of supermassive black hole binaries in merging nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3676-3689.	4.4	18
43	Higher order initial conditions for mixed baryon–CDM simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 426-445.	4.4	18
44	Simulating the complexity of the dark matter sheet I: numerical algorithms. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4943-4964.	4.4	17
45	Shell-crossing in a ĥCDM Universe. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 501, L71-L75.	3.3	17
46	General relativistic screening in cosmological simulations. Physical Review D, 2016, 94, .	4.7	16
47	Semiclassical path to cosmic large-scale structure. Physical Review D, 2019, 99, .	4.7	16
48	Measuring the tidal response of structure formation: anisotropic separate universe simulations using <scp>treepm</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 503, 1473-1489.	4.4	16
49	A hierarchical field-level inference approach to reconstruction from sparse Lyman- <i>\hat{l}±</i> forest data. Astronomy and Astrophysics, 2020, 642, A139.	5.1	15
50	Fast simulations of cosmic large-scale structure with massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 018-018.	5.4	15
51	Substructure and merger detection in resolved NIKA Sunyaev-Zel'dovich images of distant clusters. Astronomy and Astrophysics, 2018, 614, A118.	5.1	14
52	Unveiling the singular dynamics in the cosmic large-scale structure. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 505, L90-L94.	3.3	13
53	Cosmological perturbations for two cold fluids in ΛCDM. Monthly Notices of the Royal Astronomical Society, 2021, 503, 406-425.	4.4	13
54	The AGORA High-resolution Galaxy Simulations Comparison Project. III. Cosmological Zoom-in Simulation of a Milky Way–mass Halo. Astrophysical Journal, 2021, 917, 64.	4.5	12

#	Article	IF	CITATIONS
55	Simulating the complexity of the dark matter sheet – II. Halo and subhalo mass functions for non-cold dark matter models. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1703-1719.	4.4	11
56	THE ANISOTROPIC TWO-POINT CORRELATION FUNCTIONS OF THE NONLINEAR TRACELESS TIDAL FIELD IN THE PRINCIPAL-AXIS FRAME. Astrophysical Journal, 2009, 705, 1469-1472.	4.5	9
57	LAGRANGIAN STATISTICS OF DARK HALOS IN A \hat{b} CDM COSMOLOGY. Astrophysical Journal, 2009, 707, 761-767.	4.5	8
58	Quantifying the impact of baryon-CDM perturbations on halo clustering and baryon fraction. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 023.	5.4	8
59	Two is better than one: joint statistics of density and velocity in concentric spheres as a cosmological probe. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2481-2497.	4.4	7
60	Intrinsic alignments in IllustrisTNG and their implications for weak lensing: Tidal shearing and tidal torquing mechanisms put to the test. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2049-2072.	4.4	6
61	Non-halo structures and their effects on gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6019-6032.	4.4	3
62	Collisionless Dynamics and the Cosmic Web. Proceedings of the International Astronomical Union, 2014, 11, 87-96.	0.0	0
63	TRACING, ANALYZING AND VISUALIZING DARK MATTER IN PHASE SPACE. , 2015, , .		0