
Hermann C Altmeppen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2126373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell and Tissue Research, 2023, 392, 215-234.	1.5	4
2	NeuroCOVID: Insights into Neuroinvasion and Pathophysiology. Clinical and Translational Neuroscience, 2022, 6, 10.	0.4	1
3	The prion protein and its ligands: Insights into structure-function relationships. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119240.	1.9	10
4	Autosomal dominantly inherited myopathy likely caused by the <i>TNNT1</i> variant p.(Asp65Ala). Human Mutation, 2022, 43, 1224-1233.	1.1	0
5	Multiplexed mRNA analysis of brain-derived extracellular vesicles upon experimental stroke in mice reveals increased mRNA content with potential relevance to inflammation and recovery processes. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
6	Pharmacological inactivation of the prion protein by targeting a folding intermediate. Communications Biology, 2021, 4, 62.	2.0	30
7	Disordered structure and flexible roles: using the prion protein N1 fragment for neuroprotective and regenerative therapy. Neural Regeneration Research, 2021, 16, 1431.	1.6	3
8	Brain-Derived Extracellular Vesicles in Health and Disease: A Methodological Perspective. International Journal of Molecular Sciences, 2021, 22, 1365.	1.8	17
9	Prion protein oligomers cause neuronal cytoskeletal damage in rapidly progressive Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 11.	4.4	15
10	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	7.1	164
11	Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. Science Advances, 2021, 7, eabj1826.	4.7	18
12	Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions. Acta Neuropathologica, 2020, 139, 527-546.	3.9	23
13	Characterization of brainâ€derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. Journal of Extracellular Vesicles, 2020, 9, 1809065.	5.5	47
14	Prion protein post-translational modifications modulate heparan sulfate binding and limit aggregate size in prion disease. Neurobiology of Disease, 2020, 142, 104955.	2.1	5
15	Show Me Your Friends and I Tell You Who You Are: The Many Facets of Prion Protein in Stroke. Cells, 2020, 9, 1609.	1.8	6
16	Transgenic Overexpression of the Disordered Prion Protein N1 Fragment in Mice Does Not Protect Against Neurodegenerative Diseases Due to Impaired ER Translocation. Molecular Neurobiology, 2020, 57, 2812-2829.	1.9	17
17	Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease. Journal of Clinical Investigation, 2020, 130, 1350-1362.	3.9	32
18	The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers. Expert Review of Molecular Diagnostics, 2019, 19, 1007-1018.	1.5	5

#	Article	IF	CITATIONS
19	GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathogens, 2019, 15, e1007520.	2.1	34
20	Infectious prions do not induce Aβ deposition in an in vivo seeding model. Acta Neuropathologica, 2018, 135, 965-967.	3.9	8
21	Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Molecular Neurodegeneration, 2018, 13, 18.	4.4	45
22	In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cellular and Molecular Life Sciences, 2018, 75, 3251-3267.	2.4	37
23	Muskelin Coordinates PrPC Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron, 2018, 99, 1155-1169.e9.	3.8	39
24	Diverse functions of the prion protein – Does proteolytic processing hold the key?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2128-2137.	1.9	60
25	Tetraspanin 3: A central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 217-230.	1.9	26
26	Exosomes in Prion Diseases. Neuromethods, 2017, , 197-207.	0.2	0
27	Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid betaâ€mediated neurotoxicity. Journal of Neurochemistry, 2016, 137, 88-100.	2.1	117
28	Misfolding leads the way to unraveling signaling pathways in the pathophysiology of prion diseases. Prion, 2016, 10, 434-443.	0.9	2
29	Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice. Scientific Reports, 2016, 6, 24970.	1.6	22
30	Generation of aggregation prone N-terminally truncated amyloid β peptides by meprin β depends on the sequence specificity at the cleavage site. Molecular Neurodegeneration, 2016, 11, 19.	4.4	65
31	Shedding light on prion disease. Prion, 2015, 9, 244-256.	0.9	17
32	The sheddase ADAM10 is a potent modulator of prion disease. ELife, 2015, 4, .	2.8	66
33	The GPI-anchoring of PrP. Prion, 2014, 8, 11-18.	0.9	49
34	LIMP-2 expression is critical for Î ² -glucocerebrosidase activity and α-synuclein clearance. Proceedings of the United States of America, 2014, 111, 15573-15578.	3.3	109
35	High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease. Brain, 2014, 137, 873-886.	3.7	96
36	Postnatal Disruption of the Disintegrin/Metalloproteinase ADAM10 in Brain Causes Epileptic Seizures, Learning Deficits, Altered Spine Morphology, and Defective Synaptic Functions. Journal of Neuroscience, 2013, 33, 12915-12928.	1.7	107

HERMANN C ALTMEPPEN

#	Article	IF	CITATIONS
37	Roles of endoproteolytic αâ€eleavage and shedding of the prion protein in neurodegeneration. FEBS Journal, 2013, 280, 4338-4347.	2.2	48
38	Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment. Journal of Virology, 2012, 86, 3736-3745.	1.5	58
39	Proteolytic processing of the prion protein in health and disease. American Journal of Neurodegenerative Disease, 2012, 1, 15-31.	0.1	58
40	Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Molecular Neurodegeneration, 2011, 6, 36.	4.4	93
41	N-Glycans and Glycosylphosphatidylinositol-Anchor Act on Polarized Sorting of Mouse PrPC in Madin-Darby Canine Kidney Cells. PLoS ONE, 2011, 6, e24624.	1.1	19
42	Young COVID-19 Patients Show a Higher Degree of Microglial Activation When Compared to Controls. Frontiers in Neurology, 0, 13, .	1.1	7