Qinghua Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212630/publications.pdf

Version: 2024-02-01

32	1,607	23	31
papers	citations	h-index	g-index
32	32	32	1883 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Visualization of Electrochemically Accessible Sites in Flow-through Mode for Maximizing Available Active Area toward Superior Electrocatalytic Ammonia Oxidation. Environmental Science & Emp; Technology, 2022, 56, 9722-9731.	4.6	15
2	<i>In Operando</i> Visualization and Dynamic Manipulation of Electrochemical Processes at the Electrode–Solution Interface. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
3	Hotâ€Electronâ€Induced Photothermal Catalysis for Energyâ€Dependent Molecular Oxygen Activation. Angewandte Chemie, 2021, 133, 4922-4928.	1.6	9
4	Hotâ€Electronâ€Induced Photothermal Catalysis for Energyâ€Dependent Molecular Oxygen Activation. Angewandte Chemie - International Edition, 2021, 60, 4872-4878.	7.2	42
5	Synergetic Lipid Extraction with Oxidative Damage Amplifies Cellâ€Membraneâ€Destructive Stresses and Enables Rapid Sterilization. Angewandte Chemie - International Edition, 2021, 60, 7744-7751.	7.2	26
6	Synergetic Lipid Extraction with Oxidative Damage Amplifies Cellâ€Membraneâ€Destructive Stresses and Enables Rapid Sterilization. Angewandte Chemie, 2021, 133, 7823-7830.	1.6	10
7	In Situ Creation of Oxygen Vacancies in Porous Bimetallic La/Zr Sorbent for Aqueous Phosphate: Hierarchical Pores Control Mass Transport and Vacancy Sites Determine Interaction. Environmental Science & Echnology, 2020, 54, 437-445.	4.6	34
8	2D water-stable zinc-benzimidazole framework nanosheets for ultrafast and selective removal of heavy metals. Chemical Engineering Journal, 2020, 382, 122658.	6.6	55
9	Enhanced phosphate removal using zirconium hydroxide encapsulated in quaternized cellulose. Journal of Environmental Sciences, 2020, 89, 102-112.	3.2	32
10	Arrayed Cobalt Phosphide Electrocatalyst Achieves Low Energy Consumption and Persistent H2 Liberation from Anodic Chemical Conversion. Nano-Micro Letters, 2020, 12, 154.	14.4	29
11	pH-Independent Production of Hydroxyl Radical from Atomic H*-Mediated Electrocatalytic H ₂ O ₂ Reduction: A Green Fenton Process without Byproducts. Environmental Science & Enviro	4.6	106
12	A salt-rejecting anisotropic structure for efficient solar desalination ⟨i>via⟨ i> heat–mass flux decoupling. Journal of Materials Chemistry A, 2020, 8, 12089-12096.	5.2	27
13	Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. Journal of Materials Chemistry A, 2020, 8, 7870-7879.	5.2	132
14	Manipulation of Neighboring Palladium and Mercury Atoms for Efficient *OH Transformation in Anodic Alcohol Oxidation and Cathodic Oxygen Reduction Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12677-12685.	4.0	12
15	Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation. Applied Catalysis B: Environmental, 2020, 266, 118665.	10.8	108
16	Synergistic Electrocatalytic Nitrogen Reduction Enabled by Confinement of Nanosized Au Particles onto a Two-Dimensional Ti ₃ C ₂ Substrate. ACS Applied Materials & Amp; Interfaces, 2019, 11, 25758-25765.	4.0	92
17	Triggering of Low-Valence Molybdenum in Multiphasic MoS ₂ for Effective Reactive Oxygen Species Output in Catalytic Fenton-like Reactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26781-26788.	4.0	76
18	Enhanced Stabilization and Effective Utilization of Atomic Hydrogen on Pd–In Nanoparticles in a Flow-through Electrode. Environmental Science & Environmental Science & 11383-11383-11390.	4.6	60

#	Article	IF	CITATIONS
19	Tracking Internal Electron Shuttle Using X-ray Spectroscopies in La/Zr Hydroxide for Reconciliation of Charge-Transfer Interaction and Coordination toward Phosphate. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24699-24706.	4.0	22
20	Activation of Lattice Oxygen in LaFe (Oxy)hydroxides for Efficient Phosphorus Removal. Environmental Science & Environmental S	4.6	94
21	Investigating adsorption mechanism and surface complex formation modeling for aqueous sulfadiazine bonding on Fe/Mn binary oxides. Environmental Science and Pollution Research, 2019, 26, 23162-23172.	2.7	10
22	Field-Enhanced Nanoconvection Accelerated Electrocatalytic Conversion of Water Contaminants and Electricity Generation. Environmental Science & Electricity Generation. Environmental Science & Electricity Generation.	4.6	12
23	Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy, 2019, 59, 10-16.	8.2	176
24	Capillary-Flow-Optimized Heat Localization Induced by an Air-Enclosed Three-Dimensional Hierarchical Network for Elevated Solar Evaporation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9974-9983.	4.0	48
25	Synchronous Reduction–Oxidation Process for Efficient Removal of Trichloroacetic Acid: H* Initiates Dechlorination and Â∙OH Is Responsible for Removal Efficiency. Environmental Science & Technology, 2019, 53, 14586-14594.	4.6	45
26	Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation. Environmental Science & Environmenta	4.6	36
27	Porous Nanobimetallic Fe–Mn Cubes with High Valent Mn and Highly Efficient Removal of Arsenic(III). ACS Applied Materials & Interfaces, 2017, 9, 14868-14877.	4.0	42
28	Photoactuation Healing of αâ€FeOOH@g ₃ N ₄ Catalyst for Efficient and Stable Activation of Persulfate. Small, 2017, 13, 1702225.	5 . 2	76
29	Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium. Environmental Science & Echnology, 2015, 49, 13534-13541.	4.6	98
30	Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions. ACS Nano, 2015, 9, 10922-10930.	7.3	43
31	Facile Synthesis of Graphite-Reduced Graphite Oxide Core–Sheath Fiber via Direct Exfoliation of Carbon Fiber for Supercapacitor Application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9496-9502.	4.0	30
32	In Operando Visualization and Dynamic Manipulation of Electrochemical Processes at the Electrodeâ€Solution Interface. Angewandte Chemie, 0, , .	1.6	O