## **Rohan Fernandes**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2126285/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. Nano Research, 2022, 15, 2300-2314.                                                                                              | 5.8 | 12        |
| 2  | The Thermal Dose of Photothermal Therapy Generates Differential Immunogenicity in Human<br>Neuroblastoma Cells. Cancers, 2022, 14, 1447.                                                                                                  | 1.7 | 6         |
| 3  | An Engineered Prussian Blue Nanoparticlesâ€Based Nanoimmunotherapy Elicits Robust and Persistent<br>Immunological Memory in a THâ€MYCN Neuroblastoma Model. Advanced NanoBiomed Research, 2021, 1,<br>2100021.                            | 1.7 | 14        |
| 4  | CpG-coated prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4<br>immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma. Translational<br>Oncology, 2020, 13, 100823.           | 1.7 | 30        |
| 5  | HDAC6 Plays a Noncanonical Role in the Regulation of Antitumor Immune Responses, Dissemination, and Invasiveness of Breast Cancer. Cancer Research, 2020, 80, 3649-3662.                                                                  | 0.4 | 30        |
| 6  | PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function. Nano Research, 2020, 13, 736-744.                                                                         | 5.8 | 17        |
| 7  | Indocyanine Green-Nexturastat A-PLGA Nanoparticles Combine Photothermal and Epigenetic Therapy for Melanoma. Nanomaterials, 2020, 10, 161.                                                                                                | 1.9 | 25        |
| 8  | Nanoparticle-Based Immunoengineered Approaches for Combating HIV. Frontiers in Immunology, 2020, 11, 789.                                                                                                                                 | 2.2 | 20        |
| 9  | Photothermal therapies to improve immune checkpoint blockade for cancer. International Journal of<br>Hyperthermia, 2020, 37, 34-49.                                                                                                       | 1.1 | 23        |
| 10 | Engineering the TGFÎ <sup>2</sup> Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an<br>Immunotherapy for Neuroblastoma. Clinical Cancer Research, 2019, 25, 4400-4412.                                          | 3.2 | 52        |
| 11 | Prussian blue nanoparticle-based antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma. Biomaterials Science, 2019, 7, 1875-1887.                                                                | 2.6 | 40        |
| 12 | Designing Magnetically Responsive Biohybrids Composed of Cord Blood-Derived Natural Killer Cells<br>and Iron Oxide Nanoparticles. Bioconjugate Chemistry, 2019, 30, 552-560.                                                              | 1.8 | 24        |
| 13 | DAMPsâ€coated Prussian blue nanoparticles as photothermalâ€nanoimmunotherapy agents for cancer.<br>FASEB Journal, 2019, 33, 510.2.                                                                                                        | 0.2 | 1         |
| 14 | Photothermal Therapy Generates a Thermal Window of Immunogenic Cell Death in Neuroblastoma.<br>Small, 2018, 14, e1800678.                                                                                                                 | 5.2 | 168       |
| 15 | Cord blood natural killer cells expressing a dominant negative TGF-Î <sup>2</sup> receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy, 2017, 19, 408-418.                                                     | 0.3 | 97        |
| 16 | Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for<br>photothermal immunotherapy of neuroblastoma. Nanomedicine: Nanotechnology, Biology, and<br>Medicine, 2017, 13, 771-781.                  | 1.7 | 122       |
| 17 | Composite iron oxide–Prussian blue nanoparticles for magnetically guided<br>T <sub>1</sub> -weighted magnetic resonance imaging and photothermal therapy of tumors.<br>International Journal of Nanomedicine, 2017, Volume 12, 6413-6424. | 3.3 | 28        |
| 18 | Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Scientific Reports, 2016, 6, 37035.                                                        | 1.6 | 29        |

**ROHAN FERNANDES** 

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy. Nanomedicine, 2016, 11, 1759-1767.                                            | 1.7  | 56        |
| 20 | Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells.<br>Cytotherapy, 2016, 18, 1410-1421.                                                     | 0.3  | 26        |
| 21 | Biofunctionalized Prussian Blue Nanoparticles for Multimodal Molecular Imaging Applications.<br>Journal of Visualized Experiments, 2015, , e52621.                                   | 0.2  | 9         |
| 22 | Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors.<br>International Journal of Nanomedicine, 2014, 9, 2581.                                     | 3.3  | 33        |
| 23 | Prussian blue nanoparticles for laser-induced photothermal therapy of tumors. RSC Advances, 2014, 4, 29729.                                                                          | 1.7  | 93        |
| 24 | Biofunctionalized Gadolinium-Containing Prussian Blue Nanoparticles as Multimodal Molecular<br>Imaging Agents. Bioconjugate Chemistry, 2014, 25, 129-137.                            | 1.8  | 73        |
| 25 | Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature<br>Nanotechnology, 2010, 5, 213-217.                                                | 15.6 | 86        |
| 26 | Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device. Lab on A Chip, 2010, 10, 1128.                      | 3.1  | 35        |
| 27 | Alâ€⊋ biosynthesis module in a magnetic nanofactory alters bacterial response via localized synthesis<br>and delivery. Biotechnology and Bioengineering, 2009, 102, 390-399.         | 1.7  | 31        |
| 28 | A Cantilever Sensor With an Integrated Optical Readout for Detection of Enzymatically Produced Homocysteine. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3, 415-423. | 2.7  | 20        |
| 29 | Magnetic nanofactories: Localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metabolic Engineering, 2007, 9, 228-239.     | 3.6  | 30        |
| 30 | Electrochemically Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface.<br>Langmuir, 2003, 19, 4058-4062.                                                        | 1.6  | 184       |