Andrew Lenton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2125565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
2	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
3	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
4	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
5	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	9.9	616
6	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	9.9	463
7	Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 2020, 17, 3439-3470.	3.3	348
8	Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 2013, 10, 1983-2000.	3.3	276
9	Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.	3.3	255
10	The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science, 2020, 70, 193-214.	1.8	215
11	Antarctic climate change and the environment. Antarctic Science, 2009, 21, 541-563.	0.9	195
12	Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nature Geoscience, 2012, 5, 579-584.	12.9	166
13	Sea–air CO ₂ fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences, 2013, 10, 4037-4054.	3.3	162
14	A uniform, quality controlled Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2013, 5, 125-143.	9.9	158
15	Role of the Southern Annular Mode (SAM) in Southern Ocean CO2uptake. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	130
16	Evaluation of a near-global eddy-resolving ocean model. Geoscientific Model Development, 2013, 6, 591-615.	3.6	128
17	Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. Frontiers in Marine Science, 2020, 7,	2.5	114
18	The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geoscientific Model Development, 2018, 11, 1133-1160.	3.6	113

#	Article	IF	CITATIONS
19	Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophysical Research Letters, 2009, 36, .	4.0	108
20	Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 2019, 11, 1-22.	9.9	102
21	Surface Ocean CO ₂ Atlas (SOCAT) gridded data products. Earth System Science Data, 2013, 5, 145-153.	9.9	101
22	Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nature Geoscience, 2018, 11, 88-96.	12.9	96
23	Decadal trends in the ocean carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11646-11651.	7.1	94
24	The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation. Geoscientific Model Development, 2017, 10, 2567-2590.	3.6	93
25	The observed evolution of oceanic pCO ₂ and its drivers over the last two decades. Global Biogeochemical Cycles, 2012, 26, .	4.9	83
26	Evaluating Southern Ocean Carbon Eddyâ€Pump From Biogeochemicalâ€Argo Floats. Journal of Geophysical Research: Oceans, 2018, 123, 971-984.	2.6	69
27	Air–sea CO ₂ flux in the Pacific Ocean for the period 1990–2009. Biogeosciences, 2014, 11, 709-734.	3.3	68
28	Recent acceleration of the sea surface <i>f</i> CO ₂ growth rate in the North Atlantic subpolar gyre (1993–2008) revealed by winter observations. Global Biogeochemical Cycles, 2010, 24, .	4.9	67
29	The exposure of the Great Barrier Reef to ocean acidification. Nature Communications, 2016, 7, 10732.	12.8	58
30	The Effects of Carbon Dioxide Removal on the Carbon Cycle. Current Climate Change Reports, 2018, 4, 250-265.	8.6	58
31	Evidence of a prolonged drought ca. 4200†yr†BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria. Climate of the Past, 2016, 12, 1-14.	3.4	55
32	Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change, 2018, 8, 686-694.	18.8	55
33	Impact of Historical Climate Change on the Southern Ocean Carbon Cycle. Journal of Climate, 2008, 21, 5820-5834.	3.2	48
34	Sea–air CO ₂ fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 2013, 10, 7035-7052.	3.3	47
35	Long-term surface pCO ₂ trends from observations and models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 23083.	1.6	46
36	Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania. Biogeosciences, 2008, 5, 141-155.	3.3	42

#	Article	IF	CITATIONS
37	Coral bleaching pathways under the control of regional temperature variability. Nature Climate Change, 2017, 7, 839-844.	18.8	40
38	Vertical Eddy Fluxes in the Southern Ocean. Journal of Physical Oceanography, 2013, 43, 941-955.	1.7	39
39	Response to marine cloud brightening in a multi-model ensemble. Atmospheric Chemistry and Physics, 2018, 18, 621-634.	4.9	37
40	Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways. Earth System Dynamics, 2018, 9, 339-357.	7.1	37
41	Optimising reef-scale CO ₂ removal by seaweed to buffer ocean acidification. Environmental Research Letters, 2016, 11, 034023.	5.2	36
42	The carbon cycle in the Australian Community Climate andÂEarthÂSystem Simulator (ACCESS-ESM1) – PartÂ2:ÂHistoricalÂsimulations. Geoscientific Model Development, 2017, 10, 2591-2614.	3.6	36
43	Atlantic hurricane surge response to geoengineering. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13794-13799.	7.1	34
44	Eddyâ€induced carbon transport across the Antarctic Circumpolar Current. Global Biogeochemical Cycles, 2017, 31, 1368-1386.	4.9	32
45	The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle. Climate of the Past, 2016, 12, 2271-2295.	3.4	31
46	Sea Ice Meltwater and Circumpolar Deep Water Drive Contrasting Productivity in Three Antarctic Polynyas. Journal of Geophysical Research: Oceans, 2019, 124, 2943-2968.	2.6	31
47	Design of an observational strategy for quantifying the Southern Ocean uptake of CO2. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	30
48	Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Scientific Reports, 2017, 7, 17076.	3.3	27
49	Impact of episodic vertical fluxes on sea surface pCO ₂ . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2009-2025.	3.4	26
50	Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 10133-10156.	4.9	25
51	Seasonal variability of aragonite saturation state in the Western Pacific. Marine Chemistry, 2014, 161, 1-13.	2.3	23
52	Marine projections of warming and ocean acidification in the Australasian region. , 2015, 65, S1-S28.		23
53	Integrated modelling to support decision-making for marine social–ecological systems in Australia. ICES Journal of Marine Science, 2017, 74, 2298-2308.	2.5	22
54	Land and ocean nutrient and carbon cycle interactions. Current Opinion in Environmental Sustainability, 2010, 2, 258-263.	6.3	21

#	Article	IF	CITATIONS
55	Quantifying the influence of CO ₂ seasonality on future aragonite undersaturation onset. Biogeosciences, 2015, 12, 6017-6031.	3.3	21
56	Proactive, Reactive, and Inactive Pathways for Scientists in a Changing World. Earth's Future, 2019, 7, 60-73.	6.3	21
57	Quantifying the impact of ocean acidification on our future climate. Biogeosciences, 2014, 11, 3965-3983.	3.3	19
58	Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation. Environmental Research Letters, 2017, 12, 034009.	5.2	19
59	The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 13097-13113.	4.9	19
60	The Biogeochemical Structure of Southern Ocean Mesoscale Eddies. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016115.	2.6	19
61	Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification. Biogeosciences, 2015, 12, 2607-2630.	3.3	18
62	Reversing ocean acidification along the Great Barrier Reef using alkalinity injection. Environmental Research Letters, 2021, 16, 064068.	5.2	18
63	The Fate of Carbon and Nutrients Exported Out of the Southern Ocean. Global Biogeochemical Cycles, 2018, 32, 1556-1573.	4.9	17
64	Meridional Heat and Salt Transport Across the Subantarctic Front by Cold ore Eddies. Journal of Geophysical Research: Oceans, 2019, 124, 981-1004.	2.6	17
65	Anthropogenic carbon in the ocean—Surface to interior connections. Global Biogeochemical Cycles, 2016, 30, 1682-1698.	4.9	16
66	Historical reconstruction of ocean acidification in the Australian region. Biogeosciences, 2016, 13, 1753-1765.	3.3	15
67	Strategies for high-latitude northern hemisphere CO2 sampling now and in the future. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 523-532.	1.4	13
68	A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines. Energies, 2018, 11, 1568.	3.1	10
69	Carbon–climate feedbacks accelerate ocean acidification. Biogeosciences, 2018, 15, 1721-1732.	3.3	9
70	ACCESS datasets for CMIP6: methodology and idealised experiments. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 93-116.	1.8	9
71	Quantitative Foresighting as a Means of Improving Anticipatory Scientific Capacity and Strategic Planning. One Earth, 2020, 3, 631-644.	6.8	8
72	Impacts of Ocean Waveâ€Dependent Momentum Flux on Global Ocean Climate. Geophysical Research Letters, 2020, 47, e2020GL089296.	4.0	7

#	Article	IF	CITATIONS
73	An assessment of land-based climate and carbon reversibility in the Australian Community Climate and Earth System Simulator. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 713-731.	2.1	7
74	Foresight must guide geoengineering research and development. Nature Climate Change, 2019, 9, 342-342.	18.8	4
75	Divergent trajectories of ocean warming and acidification. Environmental Research Letters, 2021, 16, 124063.	5.2	3
76	Restoration of the oceans. Nature Climate Change, 2015, 5, 1028-1029.	18.8	2
77	The industry-academic nexus: a case study of collaboration. Managing Sport and Leisure, 0, , 1-17.	3.5	2
78	Constraining ocean transport. Nature Geoscience, 2018, 11, 461-462.	12.9	1
79	How Will Earth Respond to Plans for Carbon Dioxide Removal?. Eos, 2017, , .	0.1	1
80	A walnut would do. New Scientist, 2013, 217, 30.	0.0	0