List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2125518/publications.pdf Version: 2024-02-01

SHI-OINC FENC

#	Article	IF	CITATIONS
1	Application value of biofluid-based biomarkers for the diagnosis and treatment of spinal cord injury. Neural Regeneration Research, 2022, 17, 963.	3.0	7
2	Autophagy induced by Schwann cell-derived exosomes promotes recovery after spinal cord injury in rats. Biotechnology Letters, 2022, 44, 129-142.	2.2	21
3	Identification of key genes involved in recovery from spinal cord injury in adult zebrafish. Neural Regeneration Research, 2022, 17, 1334.	3.0	5
4	Contact Separation Triboelectric Nanogenerator Based Neural Interfacing for Effective Sciatic Nerve Restoration. Advanced Functional Materials, 2022, 32, .	14.9	30
5	Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Research, 2022, 10, 35.	11.4	64
6	Edaravone Modulates Neuronal GPX4/ACSL4/5-LOX to Promote Recovery After Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	14
7	Delayed administration of nafamostat mesylate inhibits thrombin-mediated blood–spinal cord barrier breakdown during acute spinal cord injury in rats. Journal of Neuroinflammation, 2022, 19, .	7.2	12
8	Neurotropin exerts neuroprotective effects after spinal cord injury by inhibiting apoptosis and modulating cytokines. Journal of Orthopaedic Translation, 2021, 26, 74-83.	3.9	28
9	Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics, 2021, 11, 715-730.	10.0	24
10	Identification of circ-FAM169A sponges miR-583 involved in the regulation of intervertebral disc degeneration. Journal of Orthopaedic Translation, 2021, 26, 121-131.	3.9	25
11	The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Molecular Medicine Reports, 2021, 23, .	2.4	16
12	miR-496/MMP10 Is Involved in the Proliferation of IL-1β-Induced Fibroblast-Like Synoviocytes Via Mediating the NF-κB Signaling Pathway. Inflammation, 2021, 44, 1359-1369.	3.8	6
13	Cytokine expressions of spinal cord injury treated by neurotropin and nafamostat mesylate. Annals of Translational Medicine, 2021, 9, 489-489.	1.7	5
14	Identification of four genes and biological characteristics associated with acute spinal cord injury in rats integrated bioinformatics analysis. Annals of Translational Medicine, 2021, 9, 570-570.	1.7	8
15	Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury. Journal of Neuroinflammation, 2021, 18, 172.	7.2	27
16	Weighted gene co-expression network analysis reveals that CXCL10, IRF7, MX1, RSAD2, and STAT1 are related to the chronic stage of spinal cord injury. Annals of Translational Medicine, 2021, 9, 1248-1248.	1.7	4
17	The emerging role of circular RNAs in spinal cord injury. Journal of Orthopaedic Translation, 2021, 30, 1-5.	3.9	8
18	The application of machine learning algorithms in predicting the length of stay following femoral neck fracture. International Journal of Medical Informatics, 2021, 155, 104572.	3.3	13

#	Article	IF	CITATIONS
19	Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regeneration Research, 2021, 16, 561.	3.0	83
20	Low-dose metformin treatment in the subacute phase improves the locomotor function of a mouse model of spinal cord injury. Neural Regeneration Research, 2021, 16, 2234.	3.0	10
21	Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Proliferation, 2021, 54, e12992.	5.3	101
22	Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Experimental and Therapeutic Medicine, 2021, 21, 48.	1.8	0
23	Signatures of altered DNA methylation gene expression after central and peripheral nerve injury. Journal of Cellular Physiology, 2020, 235, 5171-5181.	4.1	12
24	miRâ€22â€3p enhances the intrinsic regenerative abilities of primary sensory neurons via the CBL/pâ€EGFR/pâ€5TAT3/GAP43/pâ€GAP43 axis. Journal of Cellular Physiology, 2020, 235, 4605-4617.	4.1	20
25	Bioinformatic Analysis of Neuroimmune Mechanism of Neuropathic Pain. BioMed Research International, 2020, 2020, 1-10.	1.9	11
26	Guideline for diagnosis and treatment of spine trauma in the epidemic of COVID-19. Chinese Journal of Traumatology - English Edition, 2020, 23, 196-201.	1.4	11
27	Exploring the Key Genes and Pathways in the Formation of Corneal Scar Using Bioinformatics Analysis. BioMed Research International, 2020, 2020, 1-10.	1.9	6
28	Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway. Biochemical and Biophysical Research Communications, 2020, 526, 793-798.	2.1	22
29	Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebrafish. Neural Regeneration Research, 2020, 15, 103.	3.0	5
30	Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons. Neural Regeneration Research, 2020, 15, 1539.	3.0	59
31	Identification of adhesionâ€ʿassociated DNA methylation patterns in the peripheral nervous system. Experimental and Therapeutic Medicine, 2020, 21, 48.	1.8	3
32	PEITC promotes neurite growth in primary sensory neurons via the miR-17-5p/STAT3/GAP-43 axis. Journal of Drug Targeting, 2019, 27, 82-93.	4.4	21
33	miR-155-5p Promotes Dorsal Root Ganglion Neuron Axonal Growth in an Inhibitory Microenvironment via the cAMP/PKA Pathway. International Journal of Biological Sciences, 2019, 15, 1557-1570.	6.4	17
34	A Pilot Study of Parameter-Optimized Low-Intensity Pulsed Ultrasound Stimulation for the Bone Marrow Mesenchymal Stem Cells Viability Improvement. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-11.	1.3	4
35	Sorafenib promotes sensory conduction function recovery via miR-142-3p/AC9/cAMP axis post dorsal column injury. Neuropharmacology, 2019, 148, 347-357.	4.1	15
36	Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Research, 2019, 1706, 48-57.	2.2	95

#	Article	IF	CITATIONS
37	Bone marrow mesenchymal stem cells stimulated with lowâ€intensity pulsed ultrasound: Better choice of transplantation treatment for spinal cord injury. CNS Neuroscience and Therapeutics, 2019, 25, 496-508.	3.9	41
38	Epidemiological profile of thoracolumbar fracture (TLF) over a period of 10 years in Tianjin, China. Journal of Spinal Cord Medicine, 2019, 42, 178-183.	1.4	10
39	Epidemiology of traumatic spinal cord injury in Tianjin, China: An 18-year retrospective study of 735 cases. Journal of Spinal Cord Medicine, 2019, 42, 778-785.	1.4	31
40	Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regeneration Research, 2019, 14, 532.	3.0	162
41	MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium. Neural Regeneration Research, 2019, 14, 1462.	3.0	8
42	Circular RNA GRB10 as a competitive endogenous RNA regulating nucleus pulposus cells death in degenerative intervertebral disk. Cell Death and Disease, 2018, 9, 319.	6.3	54
43	Nafamostat mesilate attenuates inflammation and apoptosis and promotes locomotor recovery after spinal cord injury. CNS Neuroscience and Therapeutics, 2018, 24, 429-438.	3.9	28
44	The association of rs11190870 near LBX1 with the susceptibility and severity of AIS, a meta-analysis. International Journal of Surgery, 2018, 54, 193-200.	2.7	11
45	Comparison of Mobi-C Cervical Disc Arthroplasty Versus Fusion for the Treatment of Symptomatic Cervical Degenerative Disc Disease. World Neurosurgery, 2018, 114, e224-e239.	1.3	8
46	Dysregulated MiR-3150a-3p Promotes Lumbar Intervertebral Disc Degeneration by Targeting Aggrecan. Cellular Physiology and Biochemistry, 2018, 45, 2506-2515.	1.6	28
47	Abnormal DNA Methylation in Thoracic Spinal Cord Tissue Following Transection Injury. Medical Science Monitor, 2018, 24, 8878-8890.	1.1	10
48	Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. International Journal of Nanomedicine, 2018, Volume 13, 6265-6277.	6.7	64
49	Oligodendrocyte differentiation from human neural stem cells: A novel role for c-Src. Neurochemistry International, 2018, 120, 21-32.	3.8	9
50	Transforaminal endoscopic discectomy versus conventional microdiscectomy for lumbar discherniation: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 2018, 13, 169.	2.3	57
51	Microenvironment Imbalance of Spinal Cord Injury. Cell Transplantation, 2018, 27, 853-866.	2.5	281
52	iTRAQ-based proteomics profiling of Schwann cells before and after peripheral nerve injury. Iranian Journal of Basic Medical Sciences, 2018, 21, 832-841.	1.0	8
53	New approach to treating spinal cord injury using PEG-TAT-modified, cyclosporine-A-loaded PLGA/polymeric liposomes. Journal of Drug Targeting, 2017, 25, 75-82.	4.4	17
54	Gene expression analysis at multiple time-points identifies key genes for nerve regeneration. Muscle and Nerve, 2017, 55, 373-383.	2.2	13

#	Article	IF	CITATIONS
55	Which is best for osteoporotic vertebral compression fractures: balloon kyphoplasty, percutaneous vertebroplasty or non-surgical treatment? A study protocol for a Bayesian network meta-analysis. BMJ Open, 2017, 7, e012937.	1.9	11
56	Minimally invasive percutaneous plates versus conventional fixation techniques for distal tibial fractures: A meta-analysis. International Journal of Surgery, 2017, 38, 52-60.	2.7	16
57	CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist, 2017, 23, 627-648.	3.5	37
58	Time-dependent differential expression of long non-coding RNAs following peripheral nerve injury. International Journal of Molecular Medicine, 2017, 39, 1381-1392.	4.0	29
59	Study on the relationship between vitamin D deficiency and susceptibility to spinal tuberculosis. International Journal of Surgery, 2017, 44, 99-103.	2.7	5
60	Neurotrophin-4 induces myelin protein zero expression in cultured Schwann cells via the TrkB/PI3K/Akt/mTORC1 pathway. Animal Cells and Systems, 2017, 21, 84-92.	2.2	8
61	Differential expression of miRNAs in Osborne's ligament of cubital tunnel syndrome. Molecular Medicine Reports, 2017, 16, 687-695.	2.4	1
62	Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration. Molecular Medicine Reports, 2017, 16, 8665-8672.	2.4	27
63	Anterior inferior plating versus superior plating for clavicle fracture: a meta-analysis. BMC Musculoskeletal Disorders, 2017, 18, 159.	1.9	23
64	Comparison of DNA Methylation in Schwann Cells before and after Peripheral Nerve Injury in Rats. BioMed Research International, 2017, 2017, 1-12.	1.9	16
65	Exploring the key genes and pathways in enchondromas using a gene expression microarray. Oncotarget, 2017, 8, 43967-43977.	1.8	7
66	Docetaxel versus docetaxel plus cisplatin for non-small-cell lung cancer: a meta-analysis of randomized clinical trials. Oncotarget, 2017, 8, 57365-57378.	1.8	16
67	Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats. Neural Regeneration Research, 2017, 12, 959.	3.0	38
68	Long non-coding RNA NONMMUG014387 promotes Schwann cell proliferation after peripheral nerve injury. Neural Regeneration Research, 2017, 12, 2084.	3.0	28
69	Multifunctional biomimetic spinal cord: New approach to repair spinal cord injuries. World Journal of Experimental Medicine, 2017, 7, 78.	1.7	11
70	Cervical disc arthroplasty for symptomatic cervical disc disease: Traditional and Bayesian meta-analysis with trial sequential analysis. International Journal of Surgery, 2016, 35, 111-119.	2.7	11
71	Efficacy and safety of tension band wiring versus plate fixation in olecranon fractures: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 2016, 11, 137.	2.3	51
72	Open versus endoscopic in situ decompression in cubital tunnel syndrome: A systematic review and meta-analysis. International Journal of Surgery, 2016, 35, 104-110.	2.7	19

#	Article	IF	CITATIONS
73	Rivaroxaban for thromboprophylaxis after total hip or knee arthroplasty: a meta-analysis with trial sequential analysis of randomized controlled trials. Scientific Reports, 2016, 6, 23726.	3.3	38
74	Proteomic and bioinformatic analyses of spinal cord injury-induced skeletal muscle atrophy in rats. Molecular Medicine Reports, 2016, 14, 165-174.	2.4	5
75	Tanezumab for Patients with Osteoarthritis of the Knee: A Meta-Analysis. PLoS ONE, 2016, 11, e0157105.	2.5	36
76	Identification of microRNAome in rat bladder reveals miR-1949 as a potential inducer of bladder cancer following spinal cord injury. Molecular Medicine Reports, 2015, 12, 2849-2857.	2.4	9
77	Prevalence and risk factors of deep vein thrombosis in patients after spine surgery: a retrospective case-cohort study. Scientific Reports, 2015, 5, 11834.	3.3	44
78	Neurorestoratologic Strategies and Mechanisms in the Nervous System. BioMed Research International, 2015, 2015, 1-1.	1.9	0
79	The Carcinogenicity of Alendronate in Patients with Osteoporosis: Evidence from Cohort Studies. PLoS ONE, 2015, 10, e0123080.	2.5	10
80	Comparative Efficacy and Tolerability of Three Treatments in Old People with Osteoporotic Vertebral Compression Fracture: A Network Meta-Analysis and Systematic Review. PLoS ONE, 2015, 10, e0123153.	2.5	56
81	Comparison of Bone Mineral Density in Lumbar Spine and Fracture Rate among Eight Drugs in Treatments of Osteoporosis in Men: A Network Meta-Analysis. PLoS ONE, 2015, 10, e0128032.	2.5	29
82	shRNA against <i>PTEN</i> promotes neurite outgrowth of cortical neurons and functional recovery in spinal cord contusion rats. Regenerative Medicine, 2015, 10, 411-429.	1.7	11
83	The role of the JAK-STAT pathway in neural stem cells, neural progenitor cells and reactive astrocytes after spinal cord injury. Biomedical Reports, 2015, 3, 141-146.	2.0	52
84	miR-142-3p is a Potential Therapeutic Target for Sensory Function Recovery of Spinal Cord Injury. Medical Science Monitor, 2015, 21, 2553-2556.	1.1	21
85	Upregulated Ras/Raf/ERK1/2 signaling pathway: a new hope in the repair of spinal cord injury. Neural Regeneration Research, 2015, 10, 792.	3.0	15
86	Single-bundle or double-bundle for anterior cruciate ligament reconstruction: A meta-analysis. Knee, 2014, 21, 28-37.	1.6	58
87	Targeting RPTPI f with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model. Brain Research, 2014, 1586, 46-63.	2.2	27
88	Transplantation of Autologous Activated Schwann Cells in the Treatment of Spinal Cord Injury: Six Cases, more than Five Years of Follow-up. Cell Transplantation, 2012, 21, 39-47.	2.5	94
89	Epidemiological profile of 239 traumatic spinal cord injury cases over a period of 12 years in Tianjin, China. Journal of Spinal Cord Medicine, 2011, 34, 388-394.	1.4	58
90	Regeneration of spinal cord with cell and gene therapy. Orthopaedic Surgery, 2009, 1, 153-163.	1.8	17

#	Article	IF	CITATIONS
91	Epidemiology of worldwide spinal cord injury: a literature review. Journal of Neurorestoratology, 0, Volume 6, 1-9.	2.5	151
92	Stem cell-based therapies to treat spinal cord injury: a review. Journal of Neurorestoratology, 0, Volume 5, 125-131.	2.5	6