Juan Pablo Mackern-Oberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2125135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Frontiers in Immunology, 2020, 11, 1467.	2.2	90
2	Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmunity Reviews, 2015, 14, 127-139.	2.5	78
3	Chlamydia trachomatis infection of the male genital tract: An update. Journal of Reproductive Immunology, 2013, 100, 37-53.	0.8	75
4	Chlamydia trachomatis occurrence and its impact on sperm quality in chronic prostatitis patients. Journal of Infection, 2006, 53, 175-183.	1.7	74
5	Surface expression of the hRSV nucleoprotein impairs immunological synapse formation with T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3214-23.	3.3	58
6	Pathogenic Consequences in Semen Quality of an Autoimmune Response against the Prostate Gland: From Animal Models to Human Disease. Journal of Immunology, 2006, 177, 957-967.	0.4	53
7	Susceptibility of Prostate Epithelial Cells to Chlamydia muridarum Infection and Their Role in Innate Immunity by Recruitment of Intracellular Toll-Like Receptors 4 and 2 and MyD88 to the Inclusion. Infection and Immunity, 2006, 74, 6973-6981.	1.0	45
8	Implications of prostate inflammation on male fertility. Andrologia, 2018, 50, e13093.	1.0	45
9	Expression of CXCR3 on Specific T Cells Is Essential for Homing to the Prostate Gland in an Experimental Model of Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Journal of Immunology, 2013, 190, 3121-3133.	0.4	44
10	Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmunity Reviews, 2018, 17, 504-512.	2.5	42
11	Carbon monoxide exposure improves immune function in lupusâ€prone mice. Immunology, 2013, 140, 123-132.	2.0	37
12	Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy. Autoimmunity Reviews, 2019, 18, 359-368.	2.5	33
13	Haem oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus. Immunology, 2012, 136, 414-424.	2.0	32
14	Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology, 2015, 146, 497-507.	2.0	31
15	Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus. Clinical and Experimental Immunology, 2015, 182, 1-13.	1.1	31
16	Hormonal Modulation of Dendritic Cells Differentiation, Maturation and Function: Implications for the Initiation and Progress of Systemic Autoimmunity. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 123-136.	1.0	31
17	Autologous tolerogenic dendritic cells derived from monocytes of systemic lupus erythematosus patients and healthy donors show a stable and immunosuppressive phenotype. Immunology, 2017, 152, 648-659.	2.0	30
18	Tolerogenic dendritic cells as a therapy for treating lupus. Clinical Immunology, 2013, 148, 237-245.	1.4	29

#	Article	IF	CITATIONS
19	Modulation of antigen processing by haemâ€oxygenase 1. Implications on inflammation and tolerance. Immunology, 2016, 149, 1-12.	2.0	29
20	Male Rodent Genital Tract Infection With Chlamydia Muridarum: Persistence in the Prostate Gland That Triggers Self-Immune Reactions in Genetically Susceptible Hosts. Journal of Urology, 2011, 186, 1100-1106.	0.2	25
21	Tolerogenic dendritic cell transfer ameliorates systemic lupus erythematosus in mice. Immunology, 2019, 158, 322-339.	2.0	25
22	Heme Oxygenase-1 as a Target for the Design of Gene and Pharmaceutical Therapies for Autoimmune Diseases. Current Gene Therapy, 2014, 14, 218-235.	0.9	22
23	Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance. International Journal of Molecular Sciences, 2014, 15, 16381-16417.	1.8	19
24	Effects of autoimmunity to the prostate on the fertility of the male rat. Fertility and Sterility, 2009, 91, 2273-2280.	0.5	17
25	Innate immunity in the male genital tract: Chlamydia trachomatis induces keratinocyte-derived chemokine production in prostate, seminal vesicle and epididymis/vas deferens primary cultures. Journal of Medical Microbiology, 2011, 60, 307-316.	0.7	15
26	Male Rat Genital Tract Infection With Chlamydia Muridarum has No Significant Consequence on Male Fertility. Journal of Urology, 2012, 187, 1911-1917.	0.2	15
27	UHPLC–Q/Orbitrap/MS/MS fingerprinting and antitumoral effects of Prosopis strombulifera (LAM.) BENTH. queous extract on allograft colorectal and melanoma cancer models. Heliyon, 2020, 6, e03353.	1.4	9
28	Contribution of Dysregulated DNA Methylation to Autoimmunity. International Journal of Molecular Sciences, 2021, 22, 11892.	1.8	8
29	Chronic Infection of the Prostate by <i>Chlamydia muridarum</i> Is Accompanied by Local Inflammation and Pelvic Pain Development. Prostate, 2017, 77, 517-529.	1.2	7
30	Male genital tract immune response against Chlamydia trachomatis infection. Reproduction, 2017, 154, R99-R110.	1.1	6
31	Impaired mammary gland T cell population during early lactation in hypoprolactinemic lactation-deficient rats. Reproduction, 2013, 146, 233-242.	1.1	5
32	Desmoglein-4 Deficiency Exacerbates Psoriasiform Dermatitis in Rats While Psoriasis Patients Displayed a Decreased Gene Expression of DSG4. Frontiers in Immunology, 2021, 12, 625617.	2.2	5