Honor J Hugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2124873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 2007, 213, 374-383.	2.0	957
2	Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer and Metastasis Reviews, 2012, 31, 469-478.	2.7	285
3	Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24Io/- Stem Cell Phenotype in Human Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 235-252.	1.0	252
4	Mechanism of and requirement for estrogen-regulated <i>MYB</i> expression in estrogen-receptor-positive breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13762-13767.	3.3	114
5	New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 109-119.	1.0	83
6	Mutations in theMYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes and Cancer, 2006, 45, 1143-1154.	1.5	73
7	Defining the E-Cadherin Repressor Interactome in Epithelial-Mesenchymal Transition: The PMC42 Model as a Case Study. Cells Tissues Organs, 2011, 193, 23-40.	1.3	72
8	Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Research, 2013, 15, R113.	2.2	63
9	Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. Cancer Microenvironment, 2012, 5, 83-93.	3.1	59
10	Mammographic density: a potential monitoring biomarker for adjuvant and preventative breast cancer endocrine therapies. Oncotarget, 2017, 8, 5578-5591.	0.8	39
11	Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation. BMC Cancer, 2009, 9, 235.	1.1	25
12	T ₁ â€based sensing of mammographic density using singleâ€sided portable <scp>NMR</scp> . Magnetic Resonance in Medicine, 2018, 80, 1243-1251.	1.9	25
13	Transverse relaxationâ€based assessment of mammographic density and breast tissue composition by singleâ€sided portable NMR. Magnetic Resonance in Medicine, 2019, 82, 1199-1213.	1.9	21
14	Integrin alpha-2 and beta-1 expression increases through multiple generations of the EDW01 patient-derived xenograft model of breast cancer—insight into their role in epithelial mesenchymal transition in vivo gained from an in vitro model system. Breast Cancer Research, 2020, 22, 136.	2.2	16
15	Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Frontiers in Cell and Developmental Biology, 2020, 8, 599.	1.8	14
16	Quantification of breast tissue density: Correlation between single-sided portable NMR and micro-CT measurements. Magnetic Resonance Imaging, 2019, 62, 111-120.	1.0	12
17	MYB Elongation Is Regulated by the Nucleic Acid Binding of NFήB p50 to the Intronic Stem-Loop Region. PLoS ONE, 2015, 10, e0122919.	1.1	12
18	The role of mechanical interactions in EMT. Physical Biology, 2021, 18, 046001.	0.8	9

Honor J Hugo

#	Article	IF	CITATIONS
19	Looking beyond the mammogram to assess mammographic density: A narrative review. Biomedical Spectroscopy and Imaging, 2018, 7, 63-80.	1.2	4
20	Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle?. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 277-296.	1.0	2
21	Portable NMR for quantification of breast density in vivo: Proof-of-concept measurements and comparison with quantitative MRI. Magnetic Resonance Imaging, 2022, 92, 212-223.	1.0	2
22	RASSF1A Suppression as a Potential Regulator of Mechano-Pathobiology Associated with Mammographic Density in BRCA Mutation Carriers. Cancers, 2021, 13, 3251.	1.7	1
23	Abstract CN12-03: Epithelial-mesenchymal transition in human breast cancer progression: cancer stem cell attributes, dissemination, and dormancy. , 2008, , .		0