Jin Zou

List of Publications by Citations

Source: https://exaly.com/author-pdf/2124540/jin-zou-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 687 151 31,534 h-index g-index citations papers 7.48 35,759 735 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
687	Anatase TiO2 single crystals with a large percentage of reactive facets. <i>Nature</i> , 2008 , 453, 638-41	50.4	3391
686	Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4078-83	16.4	1149
685	Boron nitride nanotubes: Pronounced resistance to oxidation. <i>Applied Physics Letters</i> , 2004 , 84, 2430-24	13,24	678
684	A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. <i>Advanced Materials</i> , 2017 , 29, 1700017	24	651
683	Nanostructured thermoelectric materials: Current research and future challenge. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 535-549	3.6	485
682	Advanced Thermoelectric Design: From Materials and Structures to Devices. <i>Chemical Reviews</i> , 2020 , 120, 7399-7515	68.1	482
681	High Performance Thermoelectric Materials: Progress and Their Applications. <i>Advanced Energy Materials</i> , 2018 , 8, 1701797	21.8	371
680	Manipulating surface states in topological insulator nanoribbons. <i>Nature Nanotechnology</i> , 2011 , 6, 216-	21 8.7	352
6 7 9	Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in Situ Formed CeH2.73 and Ni in CeH2.73-MgH2-Ni Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7808-7820	3.8	325
678	High-performance SnSe thermoelectric materials: Progress and future challenge. <i>Progress in Materials Science</i> , 2018 , 97, 283-346	42.2	273
677	Flexible Thermoelectric Materials and Generators: Challenges and Innovations. <i>Advanced Materials</i> , 2019 , 31, e1807916	24	255
676	Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. <i>Nano Letters</i> , 2007 , 7, 921-6	11.5	240
675	n-Type Bi2Te3-xSex Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. <i>ACS Nano</i> , 2016 , 10, 4719-27	16.7	235
674	Realizing zT of 2.3 in Ge Sb In Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping. <i>Advanced Materials</i> , 2018 , 30, 1705942	24	228
673	EMoO3 Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21868-21872	3.8	222
672	Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges. <i>Advanced Functional Materials</i> , 2017 , 27, 1703278	15.6	220
671	Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 1996 , 69, 1888-1890	3.4	220

(2012-2009)

670	Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. <i>Nano Letters</i> , 2009 , 9, 3349-53	11.5	216
669	III I V semiconductor nanowires for optoelectronic device applications. <i>Progress in Quantum Electronics</i> , 2011 , 35, 23-75	9.1	215
668	Graphene flash memory. ACS Nano, 2011 , 5, 7812-7	16.7	204
667	Indium selenides: structural characteristics, synthesis and their thermoelectric performances. <i>Small</i> , 2014 , 10, 2747-65	11	201
666	Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. <i>ACS Nano</i> , 2016 , 10, 8067-77	16.7	200
665	Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. <i>Nano Letters</i> , 2006 , 6, 599-604	11.5	196
664	Cheap and scalable synthesis of Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. <i>Chemical Communications</i> , 2013 , 49, 8695-7	5.8	178
663	Novel boron nitride hollow nanoribbons. <i>ACS Nano</i> , 2008 , 2, 2183-91	16.7	173
662	High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. <i>Nano Energy</i> , 2015 , 16, 367-374	17.1	169
661	Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. <i>Scientific Reports</i> , 2013 , 3, 3208	4.9	169
660	Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: from Nb2O5 grains to microporous Na2Nb2O6.2/3H2O fibers and NaNbO3 cubes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2373-84	16.4	166
659	Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection. <i>Advanced Materials</i> , 2017 , 29, 1604439	24	161
658	Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. <i>Carbon</i> , 2012 , 50, 2119-2125	10.4	158
657	Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. <i>Nano Letters</i> , 2009 , 9, 648-54	11.5	157
656	Enhanced Thermoelectric Performance of Nanostructured Bi2Te3 through Significant Phonon Scattering. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	155
655	Fabrication of TiAl Micro/ Nanometer-Sized Porous Alloys through the Kirkendall Effect. <i>Advanced Materials</i> , 2007 , 19, 2102-2106	24	152
654	Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. <i>Advanced Functional Materials</i> , 2009 , 19, 265-271	15.6	148
653	Weak anti-localization and quantum oscillations of surface states in topological insulator BiBelle. <i>Scientific Reports</i> , 2012 , 2, 726	4.9	145

652	Strong Phonon-Phonon Interactions Securing Extraordinary Thermoelectric GeSb Te with Zn-Alloying-Induced Band Alignment. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1742-1748	16.4	145
651	2D Porous TiO Single-Crystalline Nanostructure Demonstrating High Photo-Electrochemical Water Splitting Performance. <i>Advanced Materials</i> , 2018 , 30, e1705666	24	137
650	Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. <i>Chemistry - A European Journal</i> , 2011 , 17, 1423-7	4.8	135
649	Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. <i>Advanced Materials</i> , 2019 , 31, e1807071	24	134
648	Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. <i>Advanced Materials</i> , 2014 , 26, 8203-9	24	133
647	Nanoparticles mimicking viral surface topography for enhanced cellular delivery. <i>Advanced Materials</i> , 2013 , 25, 6233-7	24	129
646	Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 44, 289-303	16.2	128
645	Fabrication of uniform anatase TiO(2) particles exposed by {001} facets. <i>Chemical Communications</i> , 2010 , 46, 6608-10	5.8	128
644	Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots. <i>Nature Materials</i> , 2010 , 9, 337-44	27	126
643	High activity electrocatalysts from metalBrganic framework-carbon nanotube templates for the oxygen reduction reaction. <i>Carbon</i> , 2015 , 82, 417-424	10.4	121
642	Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy. <i>Nano Letters</i> , 2015 , 15, 3571-7	11.5	119
641	Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. <i>Nano Letters</i> , 2012 , 12, 1170-5	11.5	119
640	Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). <i>Journal of Applied Physics</i> , 2011 , 109, 103702	2.5	118
639	Growth mechanism of truncated triangular III-V nanowires. Small, 2007, 3, 389-93	11	118
638	Arrays of Planar Vacancies in Superior Thermoelectric Ge1 LCdxBiyTe with Band Convergence. <i>Advanced Energy Materials</i> , 2018 , 8, 1801837	21.8	116
637	Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model. <i>Physical Review B</i> , 2008 , 77,	3.3	115
636	Unexpected benefits of rapid growth rate for III-V nanowires. <i>Nano Letters</i> , 2009 , 9, 695-701	11.5	114
635	Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15650-4	16.4	114

634	Na-doped p-type ZnO microwires. Journal of the American Chemical Society, 2010, 132, 2498-9	16.4	110
633	Damage to epitaxial GaN layers by silicon implantation. <i>Applied Physics Letters</i> , 1996 , 69, 2364-2366	3.4	110
632	Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. <i>Nature Communications</i> , 2016 , 7, 12516	17.4	108
631	Novel B-site ordered double perovskite Ba2Bi0.1Sc0.2Co1.7O6\(\mathbb{B}\) for highly efficient oxygen reduction reaction. <i>Energy and Environmental Science</i> , 2011 , 4, 872-875	35.4	108
630	Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. <i>Acta Materialia</i> , 2006 , 54, 3737-3746	8.4	106
629	Oxygen vacancy ordering in heavily rare-earth-doped ceria. <i>Applied Physics Letters</i> , 2006 , 89, 171911	3.4	104
628	High-Content, Well-Dispersed Fe2O3 Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. <i>Advanced Functional Materials</i> , 2014 , 24, 1354-1363	15.6	103
627	Flame-Synthesized Ceria-Supported Copper Dimers for Preferential Oxidation of CO. <i>Advanced Functional Materials</i> , 2009 , 19, 369-377	15.6	103
626	High-Performance PEDOT:PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments. <i>Chemistry of Materials</i> , 2019 , 31, 5238-5244	9.6	102
625	Achieving zT > 2 in p-Type AgSbTe2\squareSex Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults. <i>Advanced Energy Materials</i> , 2018 , 8, 1702333	21.8	100
625 624		21.8	100
	Introducing Dense Stacking Faults. <i>Advanced Energy Materials</i> , 2018 , 8, 1702333 High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. <i>Advanced Energy Materials</i> ,		
624	Introducing Dense Stacking Faults. <i>Advanced Energy Materials</i> , 2018 , 8, 1702333 High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. <i>Advanced Energy Materials</i> , 2019 , 9, 1803242	21.8	99
624	Introducing Dense Stacking Faults. Advanced Energy Materials, 2018, 8, 1702333 High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. Advanced Energy Materials, 2019, 9, 1803242 Super deformability and Young's modulus of GaAs nanowires. Advanced Materials, 2011, 23, 1356-60 A general single-source route for the preparation of hollow nanoporous metal oxide structures.	21.8	99 99
624 623 622	Introducing Dense Stacking Faults. Advanced Energy Materials, 2018, 8, 1702333 High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. Advanced Energy Materials, 2019, 9, 1803242 Super deformability and Young's modulus of GaAs nanowires. Advanced Materials, 2011, 23, 1356-60 A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angewandte Chemie - International Edition, 2009, 48, 7048-51	21.8 24 16.4	99 99 99
624 623 622	Introducing Dense Stacking Faults. Advanced Energy Materials, 2018, 8, 1702333 High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. Advanced Energy Materials, 2019, 9, 1803242 Super deformability and Young's modulus of GaAs nanowires. Advanced Materials, 2011, 23, 1356-60 A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angewandte Chemie - International Edition, 2009, 48, 7048-51 Landau level splitting in Cd3As2 under high magnetic fields. Nature Communications, 2015, 6, 7779	21.8 24 16.4	99 99 99 98 98
624 623 622 621	Introducing Dense Stacking Faults. Advanced Energy Materials, 2018, 8, 1702333 High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. Advanced Energy Materials, 2019, 9, 1803242 Super deformability and Young's modulus of GaAs nanowires. Advanced Materials, 2011, 23, 1356-60 A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angewandte Chemie - International Edition, 2009, 48, 7048-51 Landau level splitting in Cd3As2 under high magnetic fields. Nature Communications, 2015, 6, 7779 Metal nanodot memory by self-assembled block copolymer lift-off. Nano Letters, 2010, 10, 224-9 Polycrystalline SnSe with Extraordinary Thermoelectric Property via Nanoporous Design. ACS Nano,	21.8 24 16.4 17.4	99 99 99 98 98

616	Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films. <i>Applied Physics Letters</i> , 2010 , 96, 102103	3.4	96
615	Anatase TiOlærystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 2472-8	9.5	95
614	Revisiting the precipitation sequence in AlanMg-based alloys by high-resolution transmission electron microscopy. <i>Scripta Materialia</i> , 2010 , 63, 1061-1064	5.6	94
613	Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	93
612	Microstructures of phases in indented silicon: A high resolution characterization. <i>Applied Physics Letters</i> , 2003 , 82, 874-876	3.4	93
611	Promising and Eco-Friendly Cu X-Based Thermoelectric Materials: Progress and Applications. <i>Advanced Materials</i> , 2020 , 32, e1905703	24	92
610	ZnS branched architectures as optoelectronic devices and field emitters. <i>Advanced Materials</i> , 2010 , 22, 2376-80	24	92
609	Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe inducing intensive crystal imperfections and defect phonon scattering. <i>Chemical Science</i> , 2018 , 9, 7376-7389	9.4	91
608	Nearly intrinsic exciton lifetimes in single twin-free GaAsAlGaAs core-shell nanowire heterostructures. <i>Applied Physics Letters</i> , 2008 , 93, 053110	3.4	91
607	Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. <i>Advanced Energy Materials</i> , 2018 , 8, 1800056	21.8	90
606	Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives. <i>Joule</i> , 2020 , 4, 2030-2043	27.8	90
605	Direct measure of strain and electronic structure in GaAs/GaP core-shell nanowires. <i>Nano Letters</i> , 2010 , 10, 880-6	11.5	89
604	BixSb2\(\text{\text{IT}}\)Easilon anoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. <i>Nano Energy</i> , 2016 , 20, 144-155	17.1	88
603	Green Synthesis of Hexagonal-Shaped WO3D.33H2O Nanodiscs Composed of Nanosheets. <i>Crystal Growth and Design</i> , 2008 , 8, 3993-3998	3.5	87
602	Structural characteristics of GaSb G aAs nanowire heterostructures grown by metal-organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2006 , 89, 231917	3.4	87
601	Realizing High Thermoelectric Performance in n-Type Highly Distorted Sb-Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects. <i>Advanced Energy Materials</i> , 2018 , 8, 1800775	21.8	86
600	The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. <i>Nanotechnology</i> , 2009 , 20, 225606	3.4	86
599	Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures. <i>Applied Physics Letters</i> , 2008 , 93, 101911	3.4	86

(2020-2007)

598	Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures. <i>Small</i> , 2007 , 3, 1873	-711	86	
597	High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. <i>Advanced Science</i> , 2020 , 7, 1902923	13.6	85	
596	n-type Bi-doped PbTe Nanocubes with Enhanced Thermoelectric Performance. <i>Nano Energy</i> , 2017 , 31, 105-112	17.1	84	
595	High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. <i>Scripta Materialia</i> , 2017 , 141, 133-137	5.6	83	
594	High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization. <i>Advanced Functional Materials</i> , 2008 , 18, 3794-3800	15.6	83	
593	Room-temperature chiral charge pumping in Dirac semimetals. <i>Nature Communications</i> , 2017 , 8, 13741	17.4	82	
592	Establishing the Golden Range of Seebeck Coefficient for Maximizing Thermoelectric Performance. Journal of the American Chemical Society, 2020 , 142, 2672-2681	16.4	82	
591	Effects of the Al content on pore structures of porous TiAl alloys. <i>Intermetallics</i> , 2008 , 16, 327-332	3.5	82	
590	Express penetration of hydrogen on Mg(10 13) along the close-packed-planes. <i>Scientific Reports</i> , 2015 , 5, 10776	4.9	81	
589	Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11697-703	3.4	80	
588	Achieving high Figure of Merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening. <i>Energy Storage Materials</i> , 2018 , 10, 130-138	19.4	79	
587	Epitaxial growth of high mobility Bi2Se3 thin films on CdS. <i>Applied Physics Letters</i> , 2011 , 98, 242102	3.4	79	
586	Porous FeAl intermetallics fabricated by elemental powder reactive synthesis. <i>Intermetallics</i> , 2009 , 17, 1041-1046	3.5	79	
585	An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. <i>ChemSusChem</i> , 2013 , 6, 2249-54	8.3	77	
584	Lattice damage produced in GaN by swift heavy ions. <i>Journal of Applied Physics</i> , 2004 , 95, 5360-5365	2.5	76	
583	Phase separation induced by Au catalysts in ternary InGaAs nanowires. <i>Nano Letters</i> , 2013 , 13, 643-50	11.5	75	
582	Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. <i>Cement and Concrete Research</i> , 2016 , 85, 163-173	10.3	74	
581	Computer-aided design of high-efficiency GeTe-based thermoelectric devices. <i>Energy and Environmental Science</i> , 2020 , 13, 1856-1864	35.4	73	

580	Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9983		73
579	Annealing of ion implanted gallium nitride. <i>Applied Physics Letters</i> , 1998 , 72, 1190-1192	3.4	71
578	Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering. <i>Nano Energy</i> , 2019 , 65, 104056	17.1	70
577	Photocatalytic water oxidation on F, N co-doped TiO2 with dominant exposed {001} facets under visible light. <i>Chemical Communications</i> , 2011 , 47, 11742-4	5.8	70
576	Structure and Field-Emission Properties of Sub-Micrometer-Sized Tungsten-Whisker Arrays Fabricated by Vapor Deposition. <i>Advanced Materials</i> , 2009 , 21, 2387-2392	24	70
575	Siliceous nanopods from a compromised dual-templating approach. <i>Angewandte Chemie -</i> International Edition, 2007 , 46, 8579-82	16.4	70
574	Ion-beam-induced dissociation and bubble formation in GaN. Applied Physics Letters, 2000, 77, 3577-357	3 .4	70
573	Nanoscratch-induced phase transformation of monocrystalline Si. <i>Scripta Materialia</i> , 2010 , 63, 847-850	5.6	69
572	Enhancing the thermoelectric performance of SnSe1\(\mathbb{I}\)Tex nanoplates through band engineering. Journal of Materials Chemistry A, 2017 , 5, 10713-10721	13	68
571	Fundamental and progress of Bi 2 Te 3 -based thermoelectric materials. <i>Chinese Physics B</i> , 2018 , 27, 048	403	68
57°	Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9044-8	16.4	68
569	Ion-beam-induced porosity of GaN. <i>Applied Physics Letters</i> , 2000 , 77, 1455-1457	3.4	68
568	Superplasticity and superplastic forming ability of a Zr T iNi C u B e bulk metallic glass in the supercooled liquid region. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 209-217	3.9	67
567	Te-Doped Cu2Se nanoplates with a high average thermoelectric figure of merit. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9213-9219	13	67
566	Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. <i>Nano Energy</i> , 2019 , 60, 1-7	17.1	66
565	Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device. <i>Chemical Engineering Journal</i> , 2020 , 397, 125360	14.7	66
564	Depth profiling of GaN by cathodoluminescence microanalysis. <i>Applied Physics Letters</i> , 1999 , 74, 1114-1	131.66	66
563	Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing	5.3	65

562	Fiber-based thermoelectrics for solid, portable, and wearable electronics. <i>Energy and Environmental Science</i> , 2021 , 14, 729-764	35.4	65	
561	Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 5814-20	3.6	62	
560	Formation of porous NiAl intermetallics through pressureless reaction synthesis. <i>Journal of Alloys and Compounds</i> , 2009 , 484, 907-913	5.7	62	
559	Supra-assembly of siliceous vesicles. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15992-3	16.4	62	
558	Composition and its impact on shape evolution in dislocated Ge(Si)/Si islands. <i>Applied Physics Letters</i> , 2000 , 77, 1304-1306	3.4	61	
557	Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 841-849	2.6	60	
556	Distinct photocurrent response of individual GaAs nanowires induced by n-type doping. <i>ACS Nano</i> , 2012 , 6, 6005-13	16.7	59	
555	Impacts of Cu deficiency on the thermoelectric properties of Cu2\(\mathbb{R}\)Se nanoplates. <i>Acta Materialia</i> , 2016 , 113, 140-146	8.4	58	
554	Defect-free zinc-blende structured InAs nanowires catalyzed by palladium. <i>Nano Letters</i> , 2012 , 12, 5744	ŀ -9 1.5	58	
553	Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction. <i>Chemical Engineering Journal</i> , 2020 , 391, 123513	14.7	58	
552	Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties. <i>RSC Advances</i> , 2016 , 6, 1253-1259	3.7	57	
551	Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. <i>Chemical Communications</i> , 2011 , 47, 6293-5	5.8	57	
550	Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems. <i>Journal of Applied Physics</i> , 1993 , 73, 619-626	2.5	57	
549	Silicon-induced oriented ZnS nanobelts for hydrogen sensitivity. <i>Nanotechnology</i> , 2008 , 19, 055710	3.4	56	
548	Superior electrical properties of crystalline Er2O3 films epitaxially grown on Si substrates. <i>Applied Physics Letters</i> , 2006 , 88, 222902	3.4	56	
547	Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design. <i>Nanoscale</i> , 2016 , 8, 8681-6	7.7	55	
546	Self-ion-induced swelling of germanium. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2001 , 175-177, 193-196	1.2	55	
545	Ion damage buildup and amorphization processes in AlxGa1🛭 As. <i>Journal of Applied Physics</i> , 1995 , 77, 87-94	2.5	54	

544	Direct structural evidences of Mn11Ge8 and Mn5Ge2 clusters in Ge0.96Mn0.04 thin films. <i>Applied Physics Letters</i> , 2008 , 92, 101913	3.4	53
543	In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7109	13	52
542	T-Shaped Bi2Te3Te Heteronanojunctions: Epitaxial Growth, Structural Modeling, and Thermoelectric Properties. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 12458-12464	3.8	51
541	High Porosity in Nanostructured -Type BiTe Obtaining Ultralow Lattice Thermal Conductivity. <i>ACS Applied Materials & Discrete Applied & Di</i>	9.5	50
540	Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. <i>Nature Communications</i> , 2020 , 11, 4971	17.4	50
539	Enhanced Thermoelectric Performance of Ultrathin Bi2Se3 Nanosheets through Thickness Control. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500025	6.4	49
538	Metallic Ni nanocatalyst in situ formed from a metal B rganic-framework by mechanochemical reaction for hydrogen storage in magnesium. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8294-8299	13	49
537	A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA). Intermetallics, 2018 , 101, 39-43	3 3.5	49
536	Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain. <i>Nanoscale</i> , 2014 , 6, 4936-41	7.7	49
535	Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria. <i>Solid State Ionics</i> , 2008 , 179, 827-831	3.3	49
534	Ion-beam-produced damage and its stability in AlN films. <i>Journal of Applied Physics</i> , 2002 , 92, 3554-3558	32.5	49
533	Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires. <i>Nano Letters</i> , 2016 , 16, 1911-6	11.5	48
532	Catalytic De/Hydrogenation in Mg by Co-Doped Ni and VOx on Active Carbon: Extremely Fast Kinetics at Low Temperatures and High Hydrogen Capacity. <i>Advanced Energy Materials</i> , 2011 , 1, 387-393	3 ^{21.8}	48
531	Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 193-198	5.3	48
530	Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers. <i>Physical Review B</i> , 2004 , 69,	3.3	48
529	Magnetotransport Properties of Cd3As2 Nanostructures. <i>ACS Nano</i> , 2015 , 9, 8843-50	16.7	47
528	Plastic Deformation through Dislocation Saturation in Ultrasmall Pt Nanocrystals and Its in Situ Atomistic Mechanisms. <i>Nano Letters</i> , 2017 , 17, 4733-4739	11.5	47
527	Rational design of Bi2Te3 polycrystalline whiskers for thermoelectric applications. <i>ACS Applied Materials & Design Process</i> , 2015, 7, 989-95	9.5	47

526	Capacity-controllable Li-rich cathode materials for lithium-ion batteries. <i>Nano Energy</i> , 2014 , 6, 92-102	17.1	47	
525	Growth, Cathodoluminescence and Field Emission of ZnS Tetrapod Tree-like Heterostructures. <i>Advanced Functional Materials</i> , 2008 , 18, 3063-3069	15.6	47	
524	Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. <i>Progress in Materials Science</i> , 2021 , 121, 100840	42.2	47	
523	Surfactant-free Fabrication of Fullerene C Nanotubules Under Shear. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8398-8401	16.4	46	
522	Direct evidence of dopant segregation in Gd-doped ceria. <i>Applied Physics Letters</i> , 2011 , 98, 093104	3.4	46	
521	Dynamic annealing in III-nitrides under ion bombardment. <i>Journal of Applied Physics</i> , 2004 , 95, 3048-305	5 4 .5	46	
520	In situ observation of stress induced grain boundary migration in nanocrystalline gold. <i>Scripta Materialia</i> , 2017 , 134, 95-99	5.6	45	
519	Evolution of epitaxial InAs nanowires on GaAs 111B. Small, 2009, 5, 366-9	11	45	
518	Growth of Magnetic Yard-Glass Shaped Boron Nitride Nanotubes with Periodic Iron Nanoparticles. <i>Advanced Functional Materials</i> , 2007 , 17, 3371-3376	15.6	45	
517	Limit of zT enhancement in rocksalt structured chalcogenides by band convergence. <i>Physical Review B</i> , 2016 , 94,	3.3	44	
516	High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. <i>Applied Physics Letters</i> , 2013 , 103, 031605	3.4	44	
515	Self-healing of fractured GaAs nanowires. <i>Nano Letters</i> , 2011 , 11, 1546-9	11.5	44	
514	Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires. <i>Nano Letters</i> , 2007 , 7, 3383-7	11.5	44	
513	Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18767-18774	13	43	
512	Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries. <i>Acta Materialia</i> , 2012 , 60, 4695-4703	8.4	43	
511	Hydrogenation/dehydrogenation in MgH2-activated carbon composites prepared by ball milling. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 7579-7585	6.7	43	
510	Lattice distortion oriented angular self-assembly of monolayer titania sheets. <i>Journal of the American Chemical Society</i> , 2011 , 133, 695-7	16.4	43	
509	Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 445402	3	43	

508	Strengthening brittle semiconductor nanowires through stacking faults: insights from in situ mechanical testing. <i>Nano Letters</i> , 2013 , 13, 4369-73	11.5	42
507	A scalable colloidal approach to prepare hematite films for efficient solar water splitting. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12314-21	3.6	42
506	Field Emission and Cathodoluminescence of ZnS Hexagonal Pyramids of Zinc Blende Structured Single Crystals. <i>Advanced Functional Materials</i> , 2009 , 19, 484-490	15.6	42
505	Atomistic structure of monocrystalline silicon in surface nano-modification. <i>Nanotechnology</i> , 2004 , 15, 104-107	3.4	42
504	Crystal symmetry induced structure and bonding manipulation boosting thermoelectric performance of GeTe. <i>Nano Energy</i> , 2020 , 73, 104740	17.1	42
503	Controllable Growth of Vertical Heterostructure GaTe(x)Se(1-x)/Si by Molecular Beam Epitaxy. <i>ACS Nano</i> , 2015 , 9, 8592-8	16.7	41
502	Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. <i>Nature Materials</i> , 2019 , 18, 482-488	27	40
501	Separation of top and bottom surface conduction in Bi2Te3 thin films. <i>Nanotechnology</i> , 2013 , 24, 01570	053.4	40
500	Antiphotocorrosive photocatalysts containing CdS nanoparticles and exfoliated TiO2 nanosheets. Journal of Materials Research, 2010 , 25, 182-188	2.5	40
499	Defect-Free GaAs/AlGaAs CoreBhell Nanowires on Si Substrates. <i>Crystal Growth and Design</i> , 2011 , 11, 3109-3114	3.5	40
498	Formation of hierarchical InAs nanoring/GaAs nanowire heterostructures. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 780-3	16.4	40
497	TEM and XPS analysis of CaxCe1-xO2-y ($x=0.05D.5$) as electrolyte materials for solid oxide fuel cells. <i>Acta Materialia</i> , 2009 , 57, 722-731	8.4	40
496	Ag doping induced abnormal lattice thermal conductivity in Cu2Se. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13225-13231	7.1	40
495	Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n-type thermoelectric Pb0.96-yInySe. <i>Nano Energy</i> , 2018 , 50, 785-793	17.1	39
494	Polarity-driven nonuniform composition in InGaAs nanowires. <i>Nano Letters</i> , 2013 , 13, 5085-9	11.5	39
493	Laser engineered graphene paper for mass spectrometry imaging. Scientific Reports, 2013 , 3, 1415	4.9	39
492	Effect of Al content on porous Ni A l alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 4849-4855	5.3	38
491	Anelastic behavior in GaAs semiconductor nanowires. <i>Nano Letters</i> , 2013 , 13, 3169-72	11.5	37

(2010-2013)

490	Defects clustering and ordering in di- and trivalently doped ceria. <i>Materials Research Bulletin</i> , 2013 , 48, 807-812	5.1	37	
489	The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics, 2011 , 19, 1759-1765	3.5	37	
488	Nanoscratch-induced deformation of single crystal silicon. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1374		37	
487	Evolution of InAs branches in InAs©aAs nanowire heterostructures. <i>Applied Physics Letters</i> , 2007 , 91, 133115	3.4	37	
486	Rational structural design and manipulation advance SnSe thermoelectrics. <i>Materials Horizons</i> , 2020 , 7, 3065-3096	14.4	37	
485	Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of therapeutical proteins. <i>Small</i> , 2014 , 10, 5068-76	11	36	
484	Reactive synthesis of microporous titanium-aluminide membranes. <i>Materials Letters</i> , 2009 , 63, 22-24	3.3	36	
483	Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. <i>ACS Nano</i> , 2008 , 2, 1523-32	16.7	36	
482	Polarity driven formation of InAs/GaAs hierarchical nanowire heterostructures. <i>Applied Physics Letters</i> , 2008 , 93, 201908	3.4	36	
481	Thermal stability of ion-implanted ZnO. <i>Applied Physics Letters</i> , 2005 , 87, 231912	3.4	36	
480	Determination of Young's Modulus of Ultrathin Nanomaterials. <i>Nano Letters</i> , 2015 , 15, 5279-83	11.5	35	
479	Laser irradiated vortex fluidic mediated synthesis of luminescent carbon nanodots under continuous flow. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 164-170	4.9	35	
478	Oxidation behavior of porous NiAl prepared through reactive synthesis. <i>Materials Chemistry and Physics</i> , 2010 , 122, 417-423	4.4	35	
477	Efficient production of ZnO nanowires by a ball milling and annealing method. <i>Nanotechnology</i> , 2007 , 18, 175604	3.4	35	
476	Effect of over-doped yttrium on the microstructure, mechanical properties and thermal properties of a Zr-based metallic glass. <i>Acta Materialia</i> , 2006 , 54, 3627-3635	8.4	35	
475	Scalable Growth of High Mobility Dirac Semimetal Cd3As2 Microbelts. <i>Nano Letters</i> , 2015 , 15, 5830-4	11.5	34	
474	Observations of a metal-insulator transition and strong surface states in Bi2-x SbxSe3 thin films. <i>Advanced Materials</i> , 2014 , 26, 7110-5	24	34	
473	Mn-rich clusters in GeMn magnetic semiconductors: Structural evolution and magnetic property. Journal of Alloys and Compounds, 2010 , 508, 273-277	5.7	34	

472	Field emitters: ultrathin BN nanosheets protruded from BN fibers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1191-1195		34
471	The effects of ion mass, energy, dose, flux and irradiation temperature on implantation disorder in GaN. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2001 , 178, 209-213	1.2	34
470	Structural disorder in ion-implanted AlxGa1⊠N. <i>Applied Physics Letters</i> , 2002 , 80, 787-789	3.4	34
469	Flower-like C@SnO X @C hollow nanostructures with enhanced electrochemical properties for lithium storage. <i>Nano Research</i> , 2017 , 10, 2966-2976	10	33
468	Site-specific growth of MOF-on-MOF heterostructures with controllable nano-architectures: beyond the combination of MOF analogues. <i>Chemical Science</i> , 2020 , 11, 3680-3686	9.4	33
467	Structure and quality controlled growth of InAs nanowires through catalyst engineering. <i>Nano Research</i> , 2014 , 7, 1640-1649	10	33
466	A formation mechanism of oxygen vacancies in a MnO2 monolayer: a DFT + U study. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 11325-8	3.6	33
465	Effect of Ag micro-alloying on the microstructure and properties of Cull 4Fe in situ composite. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4953-4958	5.3	33
464	Dislocation-induced spatial ordering of InAs quantum dots: Effects on optical properties. <i>Journal of Applied Physics</i> , 2002 , 91, 5826-5830	2.5	33
463	Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. <i>Advanced Materials</i> , 2019 , 31, e1801564	24	33
462	Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. <i>Nano Research</i> , 2015 , 8, 3332-3341	10	32
461	Characterization of porous Ni3Al electrode for hydrogen evolution in strong alkali solution. <i>Materials Chemistry and Physics</i> , 2013 , 141, 553-561	4.4	32
460	Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity. <i>Nano Letters</i> , 2017 , 17, 7824-7830	11.5	32
459	Catalyst orientation-induced growth of defect-free zinc-blende structured <001 > InAs nanowires. <i>Nano Letters</i> , 2015 , 15, 876-82	11.5	32
458	Present status and future prospect of design of PtEerium oxide electrodes for fuel cell applications. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 561-571	3.6	32
457	Room-temperature electric-field controlled ferromagnetism in Mn0.05Ge0.95 quantum dots. <i>ACS Nano</i> , 2010 , 4, 4948-54	16.7	32
456	A structure model of nano-sized domain in Gd-doped ceria. <i>Solid State Ionics</i> , 2009 , 180, 1414-1420	3.3	32
455	Blistering of H-implanted GaN. <i>Journal of Applied Physics</i> , 2002 , 91, 3928-3930	2.5	32

(2007-2019)

454	Enhancing Thermoelectric Properties of InTe Nanoprecipitate-Embedded Sn1\(\mathbb{I}\)InxTe Microcrystals through Anharmonicity and Strain Engineering. ACS Applied Energy Materials, 2019, 2, 2965-2971	6.1	31	
453	Hollow Carbon Nanospheres with Extremely Small Size as Anode Material in Lithium-Ion Batteries with Outstanding Cycling Stability. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3139-3144	3.8	31	
452	High-Density, Defect-Free, and Taper-Restrained Epitaxial GaAs Nanowires Induced from Annealed Au Thin Films. <i>Crystal Growth and Design</i> , 2012 , 12, 2018-2022	3.5	31	
45 ¹	Ordered structures of defect clusters in gadolinium-doped ceria. <i>Journal of Chemical Physics</i> , 2011 , 134, 224708	3.9	31	
450	Novel growth and properties of GaAs nanowires on Si substrates. <i>Nanotechnology</i> , 2010 , 21, 035604	3.4	31	
449	Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1 IkSe via anisotropy and vacancy synergy. <i>Informa</i> Materilly, 2020 , 2, 1201-1215	23.1	31	
448	In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 2640-2645	5.7	31	
447	Thin boron nitride nanotubes with exceptionally high strength and toughness. <i>Nanoscale</i> , 2013 , 5, 4840)-6 .7	30	
446	Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. <i>Applied Physics Letters</i> , 2013 , 103, 073109	3.4	30	
445	Nature of interfacial defects and their roles in strain relaxation at highly lattice mismatched 3C-SiC/Si (001) interface. <i>Journal of Applied Physics</i> , 2009 , 106, 073522	2.5	30	
444	Novel impurity-free interdiffusion in GaAs/AlGaAs quantum wells by anodization and rapid thermal annealing. <i>Applied Physics Letters</i> , 1997 , 70, 1269-1271	3.4	30	
443	Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding. <i>Nanotechnology</i> , 2007 , 18, 465705	3.4	30	
442	ZnS nanowires and their coaxial lateral nanowire heterostructures with BN. <i>Applied Physics Letters</i> , 2007 , 90, 103117	3.4	30	
441	Disordering and anomalous surface erosion of GaN during ion bombardment at elevated temperatures. <i>Applied Physics Letters</i> , 2001 , 78, 1373-1375	3.4	30	
440	Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. <i>Materials Science & Discounting A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 742, 762-772	5.3	30	
439	High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18920-3	16.4	29	
438	An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. <i>Nanotechnology</i> , 2013 , 24, 285703	3.4	29	
437	Evidence of Intragranular Segregation of Dopant Cations in Heavily Yttrium-Doped Ceria. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, P1		29	

436	Amorphous structures induced in monocrystalline silicon by mechanical loading. <i>Applied Physics Letters</i> , 2004 , 85, 932-934	3.4	29
435	A novel bottom-up solvothermal synthesis of carbon nanosheets. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2390	13	28
434	Evolution of Wurtzite Structured GaAs Shells Around InAs Nanowire Cores. <i>Nanoscale Research Letters</i> , 2009 , 4, 846-849	5	28
433	Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850°C. <i>Journal of Crystal Growth</i> , 2007 , 306, 433-436	1.6	28
432	Enhanced glass-forming ability of a Zr-based bulk metallic glass with yttrium doping. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 3109-3112	3.9	28
431	Ge/Si interdiffusion in the GeSi dots and wetting layers. <i>Journal of Applied Physics</i> , 2001 , 90, 4290-4292	2.5	28
430	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. <i>ACS Nano</i> , 2019 , 13, 3492-3499	16.7	28
429	Wearable fiber-based thermoelectrics from materials to applications. <i>Nano Energy</i> , 2021 , 81, 105684	17.1	28
428	Super Large SnSe Single Crystals with Excellent Thermoelectric Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 8051-8059	9.5	27
427	The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al M o electrode in alkaline solution during long-term electrolysis. <i>Energy</i> , 2014 , 67, 19-26	7.9	27
426	Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6262	13	27
425	Development of a new graded-porosity FeAl alloy by elemental reactive synthesis. <i>Desalination</i> , 2009 , 249, 29-33	10.3	27
424	Ionic Conductivities and Microstructures of Ytterbium-Doped Ceria. <i>Journal of the Electrochemical Society</i> , 2007 , 154, B180	3.9	27
423	Microstructural characterization of terbium-doped ceria. <i>Materials Research Bulletin</i> , 2007 , 42, 943-949	5.1	27
422	Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. <i>Journal of Applied Physics</i> , 2007 , 101, 113528	2.5	27
421	Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. <i>Energy and Environmental Science</i> , 2020 , 13, 3480-3488	35.4	27
420	High Thermoelectric Performance in Sintered Octahedron-Shaped Sn(CdIn) Te Microcrystals. <i>ACS Applied Materials & Discourse Material</i>	9.5	27
419	Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires. <i>Nano Letters</i> , 2016 , 16, 1787-93	11.5	26

(2016-2015)

418	Correlation between Multiple Growth Stages and Photocatalysis of SrTiO3 Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 3530-3537	3.8	26	
417	Cerium-Reduction-Induced Defects Clustering, Ordering, and Associated Microstructure Evolution in Yttrium-Doped Ceria. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5435-5443	3.8	26	
416	Optimization of ionic conductivity in solid electrolytes through dopant-dependent defect cluster analysis. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8369-75	3.6	26	
415	Wurtzite P-Doped GaN Triangular Microtubes as Field Emitters. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9627-9633	3.8	26	
414	Effect of nickel diffusion on the microstructure of Gd-doped ceria (GDC) electrolyte film supported by NiCiDC cermet anode. <i>Solid State Ionics</i> , 2010 , 181, 646-652	3.3	26	
413	Influence of nitriding gases on the growth of boron nitride nanotubes. <i>Journal of Materials Science</i> , 2007 , 42, 4025-4030	4.3	26	
412	Glass-forming ability and thermal stability of a new bulk metallic glass in the quaternary Zrtunial system. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 2519-2523	3.9	26	
411	Anodic-oxide-induced interdiffusion in GaAs/AlGaAs quantum wells. <i>Journal of Applied Physics</i> , 1998 , 83, 1305-1311	2.5	26	
410	Mechanically Driven Grain Boundary Formation in Nickel Nanowires. ACS Nano, 2017, 11, 12500-12508	16.7	25	
409	A new crystal: layer-structured rhombohedral In3Se4. <i>CrystEngComm</i> , 2014 , 16, 393-398	3.3	25	
408	Grain boundary's conductivity in heavily yttrium doped ceria. Solid State Ionics, 2012, 222-223, 31-37	3.3	25	
407	Mutual diffusion occurring at the interface between LalBrillolBelDltathode and Gd-doped ceria electrolyte during IT-SOFC cell preparation. ACS Applied Materials & Eamp; Interfaces, 2011, 3, 2772-	. 8 9.5	25	
406	Growth and properties of IIII compound semiconductor heterostructure nanowires. <i>Semiconductor Science and Technology</i> , 2011 , 26, 014035	1.8	25	
405	Structure transition from hexagonal mesostructured rodlike silica to multilamellar vesicles. <i>Langmuir</i> , 2008 , 24, 5038-43	4	25	
404	Nature of Planar Defects in Ion-Implanted GaN. Electrochemical and Solid-State Letters, 2003, 6, G34		25	
403	Effects of interdiffusion on the band alignment of GeSi dots. <i>Applied Physics Letters</i> , 2001 , 79, 1980-198	323.4	25	
402	Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth. <i>Applied Physics Letters</i> , 2002 , 81, 1996-1998	3.4	25	
401	Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers. <i>Carbon</i> , 2016 , 96, 904-910	10.4	24	

400	Effect of directional solidification rate on the microstructure and properties of deformation-processed CuIICrII.1Ag in situ composites. <i>Journal of Alloys and Compounds</i> , 2014 , 612, 221-226	5.7	24
399	Synthesis and magnetic properties of Fe3C-C core-shell nanoparticles. <i>Nanotechnology</i> , 2015 , 26, 0856	03.4	24
398	Tortuosity factor for porous FeAl intermetallics fabricated by reactive synthesis. <i>Transactions of Nonferrous Metals Society of China</i> , 2012 , 22, 2179-2183	3.3	24
397	Taper-Free and Vertically Oriented Ge Nanowires on Ge/Si Substrates Grown by a Two-Temperature Process. <i>Crystal Growth and Design</i> , 2012 , 12, 135-141	3.5	24
396	Metallic and Ionic Fe Induced Growth of SiBiOx CoreBhell Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15370-15376	3.8	24
395	A systematic study of long-range ordered 3D-SBA-15 materials by electron tomography. <i>New Journal of Chemistry</i> , 2011 , 35, 2456	3.6	24
394	Structural phase transformation through defect cluster growth in Gd-doped ceria. <i>Physical Review B</i> , 2011 , 84,	3.3	24
393	Growth of single-crystalline, atomically smooth MgO films on Ge(001) by molecular beam epitaxy. Journal of Crystal Growth, 2009 , 312, 44-47	1.6	24
392	MnGe magnetic nanocolumns and nanowells. <i>Nanotechnology</i> , 2010 , 21, 255602	3.4	24
391	Solving complex concentric circular mesostructures by using electron tomography. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6670-3	16.4	24
390	Atomic configurations of dislocation core and twin boundaries in 3CBiC studied by high-resolution electron microscopy. <i>Physical Review B</i> , 2007 , 75,	3.3	24
389	Critical thickness determination of InxGa1-xAs/GaAs strained-layer system by transmission electron microscopy. <i>Journal of Electronic Materials</i> , 1991 , 20, 855-859	1.9	24
388	Optimizing Electronic Quality Factor toward High-Performance Ge Ta Sb Te Thermoelectrics: The Role of Transition Metal Doping. <i>Advanced Materials</i> , 2021 , 33, e2102575	24	24
387	Proximity-induced surface superconductivity in Dirac semimetal CdAs. <i>Nature Communications</i> , 2019 , 10, 2217	17.4	23
386	Anisotropic Electrical Properties from VaporBolidBolid Grown Bi2Se3Nanoribbons and Nanowires. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20620-20626	3.8	23
385	Safety evaluation of graphene oxide-based magnetic nanocomposites as MRI contrast agents and drug delivery vehicles. <i>RSC Advances</i> , 2014 , 4, 50464-50477	3.7	23
384	Characterization of the porous Ni3AlMo electrodes during hydrogen generation from alkaline water electrolysis. <i>Energy</i> , 2013 , 63, 216-224	7.9	23
383	The creep behaviour of poly(vinylidene fluoride)/Bud-branchedlhanotubes nanocomposites. Composites Science and Technology, 2012, 72, 1656-1664	8.6	23

382	Oxygen vacancy induced structural variations of exfoliated monolayer MnO2 sheets. <i>Physical Review B</i> , 2010 , 81,	3.3	23
381	Mutual Diffusion and Microstructure Evolution at the ElectrolyteAnode Interface in Intermediate Temperature Solid Oxide Fuel Cell. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6877-6885	3.8	23
380	Effects of annealing and substrate orientation on epitaxial growth of GaAs on Si. <i>Journal of Applied Physics</i> , 2009 , 106, 083514	2.5	23
379	Highly Thiolated Dendritic Mesoporous Silica Nanoparticles with High-Content Gold as Nanozymes: The Nano-Gold Size Matters. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 13264-13272	9.5	22
378	Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires. <i>Applied Physics Letters</i> , 2014 , 104, 021904	3.4	22
377	Single-crystalline spherical EGa2O3 particles: Synthesis, N-doping and photoluminescence properties. <i>Journal of Luminescence</i> , 2013 , 140, 30-37	3.8	22
376	Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy. <i>Applied Physics Letters</i> , 2013 , 102, 063106	3.4	22
375	Dislocation associated incubational domain formation in lightly gadolinium-doped ceria. <i>Microscopy and Microanalysis</i> , 2011 , 17, 49-53	0.5	22
374	Influence of Ag micro-alloying on the microstructure and properties of CullCr in situ composite. Journal of Alloys and Compounds, 2010 , 500, L22-L25	5.7	22
373	Adatom condensation and quantum dot sizes in InGaAs/GaAs (001). <i>Applied Physics Letters</i> , 2000 , 76, 1558-1560	3.4	22
372	Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity. <i>Chemical Engineering Journal</i> , 2019 , 375, 121996	14.7	21
371	In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1862	2 7 -186	3 3 1
370	Electron-tomography determination of the packing structure of macroporous ordered siliceous foams assembled from vesicles. <i>Small</i> , 2009 , 5, 377-82	11	21
369	Effect of heating rate on pore structure of porous FeAl material. <i>Powder Metallurgy</i> , 2008 , 51, 171-175	1.9	21
368	Multilayered carbon films for tribological applications. <i>Diamond and Related Materials</i> , 2003 , 12, 178-18	4 3.5	21
367	Implantation-produced structural damage in InxGa1N. <i>Applied Physics Letters</i> , 2001 , 79, 602-604	3.4	21
366	Extracting composition and alloying information of coherent Ge(Si)/Si(001) islands from [001] on-zone bright-field diffraction contrast images. <i>Journal of Applied Physics</i> , 2001 , 90, 2725-2729	2.5	21
365	Microstructure and properties of Cu E e deformation processed in-situ composite. <i>Vacuum</i> , 2019 , 167, 54-58	3.7	20

364	Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu2\(\text{LS} \). Journal of Materials Chemistry C, 2019 , 7, 5366-5373	7.1	20
363	High performance UV light photodetectors based on Sn-nanodot-embedded SnO2 nanobelts. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5253-5258	7.1	20
362	Enhancing thermoelectric performance of (Cu1-xAgx)2Se via CuAgSe secondary phase and porous design. <i>Sustainable Materials and Technologies</i> , 2018 , 17, e00076	5.3	20
361	Pore structure control for porous FeAl intermetallics. <i>Intermetallics</i> , 2013 , 32, 423-428	3.5	20
360	Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer. <i>Journal of Crystal Growth</i> , 2015 , 425, 268-273	1.6	20
359	Protein Therapy: Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins (Small 24/2014). <i>Small</i> , 2014 , 10, 498	36 ⁻¹ 4980	6 ²⁰
358	Quantum capacitance in topological insulators. <i>Scientific Reports</i> , 2012 , 2, 669	4.9	20
357	Fabrication of tungsten carbideNanadium carbide coreEhell structure powders and their application as an inhibitor for the sintering of cemented carbides. <i>Scripta Materialia</i> , 2012 , 67, 826-829	5.6	20
356	Microstructural Characteristics of SDC Electrolyte Film Supported by NiBDC Cermet Anode. Journal of the Electrochemical Society, 2009 , 156, B825	3.9	20
355	Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD. <i>Nanotechnology</i> , 2011 , 22, 405704	3.4	20
354	Vertically standing Ge nanowires on GaAs(110) substrates. <i>Nanotechnology</i> , 2008 , 19, 125602	3.4	20
353	Determination of a misfit dislocation complex in SiGe/Si heterostructures by image deconvolution technique in HREM. <i>Ultramicroscopy</i> , 2004 , 98, 259-64	3.1	20
352	Effect of ion species on implantation-produced disorder in GaN at liquid nitrogen temperature. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 190, 782-786	1.2	20
351	{111} defects in 1-MeV-silicon-ion-implanted silicon. <i>Physical Review B</i> , 1995 , 52, 17223-17230	3.3	20
350	Theoretical consideration of equilibrium dissociation geometries of 600 misfit dislocations in single semiconductor heterostructures. <i>Journal of Applied Physics</i> , 1995 , 77, 2448-2453	2.5	20
349	Theoretical consideration of misfit dislocation nucleation by partial dislocations in [001] strained-layer heterostructures. <i>Journal of Applied Physics</i> , 1993 , 74, 925-930	2.5	20
348	Quality Control of GaAs Nanowire Structures by Limiting As Flux in Molecular Beam Epitaxy. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20721-20727	3.8	19
347	In situ atomistic deformation mechanisms of twin-structured nanocrystal Pt. <i>Scripta Materialia</i> , 2018 , 147, 103-107	5.6	19

(2021-2014)

346	Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2014 , 105, 162102	3.4	19
345	Paramagnetic Cu-doped Bi2Te3 nanoplates. <i>Applied Physics Letters</i> , 2014 , 104, 053105	3.4	19
344	Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. <i>Applied Physics Letters</i> , 2013 , 103, 263105	3.4	19
343	Zinc sulfide nanowire arrays on silicon wafers for field emitters. <i>Nanotechnology</i> , 2010 , 21, 065701	3.4	19
342	Structural characteristics and high-temperature oxidation behavior of porous FeIIO at.%Al alloy. <i>Journal of Materials Science</i> , 2009 , 44, 4413-4421	4.3	19
341	Transition between amorphous and crystalline phases of SiC deposited on Si substrate using H3SiCH3. <i>Journal of Crystal Growth</i> , 2009 , 311, 4442-4446	1.6	19
340	Annealing effects on the microstructure of Ge/Si(001) quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 1258-1260	3.4	19
339	Role of implantation-induced defects on the response time of semiconductor saturable absorbers. <i>Applied Physics Letters</i> , 1999 , 75, 1437-1439	3.4	19
338	Nucleation of semicircular misfit dislocation loops from the epitaxial surface of strained-layer heterostructures. <i>Journal of Applied Physics</i> , 1996 , 79, 7632-7635	2.5	19
337	Outstanding thermoelectric properties of solvothermal-synthesized Sn1BxInxAg2xTe micro-crystals through defect engineering and band tuning. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3978-3987	13	19
336	High-efficiency thermocells driven by thermo-electrochemical processes. <i>Trends in Chemistry</i> , 2021 , 3, 561-574	14.8	19
335	Crystal-phase control of GaAstaAsSb corethell/axial nanowire heterostructures by a two-step growth method. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6726-6732	7.1	19
334	Morphological control of SnTe nanostructures by tuning catalyst composition. <i>Nano Research</i> , 2015 , 8, 3011-3019	10	18
333	The preparation, structures, and properties of poly(vinylidene fluoride)/multiwall carbon nanotubes nanocomposites. <i>Journal of Applied Polymer Science</i> , 2012 , 125, E592	2.9	18
332	Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate. <i>Journal of Materials Research</i> , 2013 , 28, 1047-1055	2.5	18
331	Two-probe electrical measurements in transmission electron microscopesbehavioral control of tungsten microwires. <i>Microscopy Research and Technique</i> , 2009 , 72, 93-100	2.8	18
330	Microstructural Inhomogeneity in Holmium-Doped Ceria and Its Influence on the Ionic Conduction. Journal of the Electrochemical Society, 2007 , 154, B616	3.9	18
329	Versatile Vanadium Doping Induces High Thermoelectric Performance in GeTe via Band Alignment and Structural Modulation. <i>Advanced Energy Materials</i> , 2021 , 11, 2100544	21.8	18

328	Laser-Ablated Vortex Fluidic-Mediated Synthesis of Superparamagnetic Magnetite Nanoparticles in Water Under Flow. <i>ACS Omega</i> , 2018 , 3, 11172-11178	3.9	18
327	In Situ TEM Observation of Crystal Structure Transformation in InAs Nanowires on Atomic Scale. <i>Nano Letters</i> , 2018 , 18, 6597-6603	11.5	18
326	Growth of III-V semiconductor nanowires and their heterostructures. <i>Science China Materials</i> , 2016 , 59, 51-91	7.1	17
325	Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. <i>Nanotechnology</i> , 2013 , 24, 505705	3.4	17
324	Helical growth of aluminum nitride: new insights into its growth habit from nanostructures to single crystals. <i>Scientific Reports</i> , 2015 , 5, 10087	4.9	17
323	Toughening and reinforcement of poly(vinylidene fluoride) nanocomposites with B ud-branched nanotubes. <i>Composites Science and Technology</i> , 2012 , 72, 263-268	8.6	17
322	Effect of Grain Growth on Densification and Conductivity of Ca-Doped CeO2 Electrolyte. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2745-2750	3.8	17
321	Mn behaviors in Mn-implanted ZnO. <i>Acta Materialia</i> , 2009 , 57, 2291-2299	8.4	17
320	Temperature influence on sintering with concurrent crystallization behavior in Ti-based metallic glassy powders. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 2662-2668	5.3	17
319	Effects of dopant concentration and calcination temperature on the microstructure of Ca-doped ceria nanopowders. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 2709-2716	6	17
318	Optical transition in infrared photodetector based on V-groove Al0.5Ga0.5As/GaAs multiple quantum wire. <i>Journal of Applied Physics</i> , 2001 , 89, 2351-2356	2.5	17
317	Preferred orientation in carbon films induced by energetic condensation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1996 , 119, 587-590	1.2	17
316	Two-dimensional ferromagnetic superlattices. <i>National Science Review</i> , 2020 , 7, 745-754	10.8	17
315	A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119923	21.8	17
314	Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain. <i>Applied Physics Letters</i> , 2016 , 108, 151903	3.4	17
313	Signature of quantum Griffiths singularity state in a layered quasi-one-dimensional superconductor. <i>Nature Communications</i> , 2018 , 9, 4656	17.4	17
312	Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 2255-2261	2.3	16
311	Organic fluorescent dyes supported on activated boron nitride: a promising blue light excited phosphors for high-performance white light-emitting diodes. <i>Scientific Reports</i> , 2015 , 5, 8492	4.9	16

(2010-2015)

310	Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries. <i>Nano Research</i> , 2015 , 8, 808-820	10	16	
309	Achieving high thermoelectric performance of Ni/Cu modified Bi0.5Sb1.5Te3 composites by a facile electroless plating. <i>Materials Today Energy</i> , 2018 , 9, 383-390	7	16	
308	Controlled synthesis and optical properties of Cu/C core/shell nanoparticles. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	16	
307	Nanodomain formation and distribution in Gd-doped ceria. <i>Materials Research Bulletin</i> , 2012 , 47, 763-7	675.1	16	
306	Trifold Tellurium One-Dimensional Nanostructures and Their Formation Mechanism. <i>Crystal Growth and Design</i> , 2013 , 13, 4796-4802	3.5	16	
305	Evolution of helical mesostructures. <i>Chemistry - A European Journal</i> , 2010 , 16, 1629-37	4.8	16	
304	Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism. <i>Nanotechnology</i> , 2008 , 19, 345604	3.4	16	
303	Microstructure of MmM5/Mg multi-layer films prepared by magnetron sputtering. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 485-489	5.7	16	
302	Distinguishing glide and shuffle types for 60\(^0\)dislocation in semicoductors by field-emission HREM image processing. <i>Ultramicroscopy</i> , 2000 , 85, 131-139	3.1	16	
301	Effects of anodic oxide induced intermixing on the structural and optical properties of quantum wire structure grown on nonplanar GaAs substrate. <i>Journal of Applied Physics</i> , 1996 , 80, 5014-5020	2.5	16	
300	Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning V/III ratio in molecular beam epitaxy. <i>Acta Materialia</i> , 2015 , 92, 25-32	8.4	15	
299	Direct observation of structural transitions in the phase change material Ge2Sb2Te5. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9303-9309	7.1	15	
298	Phase Control and Formation Mechanism of New-Phase Layer-Structured Rhombohedral In3Se4 Hierarchical Nanostructures. <i>Crystal Growth and Design</i> , 2013 , 13, 5092-5099	3.5	15	
297	Observation of enhanced carrier transport properties of Si <100>-oriented whiskers under uniaxial strains. <i>Applied Physics Letters</i> , 2014 , 104, 013111	3.4	15	
296	Catalytically enhanced dehydrogenation of MgH2 by activated carbon supported PdⅣOx (x=2.38) nanocatalyst. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 13393-13399	6.7	15	
295	Catalyst size dependent growth of Pd-catalyzed one-dimensional InAs nanostructures. <i>Applied Physics Letters</i> , 2013 , 102, 203108	3.4	15	
294	Coherent magnetic semiconductor nanodot arrays. Nanoscale Research Letters, 2011 , 6, 134	5	15	
293	Effect of preheating treatment at 575°C of green compacts on porous NiAl. <i>Journal of Alloys and Compounds</i> , 2010 , 492, 219-225	5.7	15	

274	Compositional Varied Core-Shell InGaP Nanowires Grown by Metal-Organic Chemical Vapor Deposition. <i>Nano Letters</i> , 2019 , 19, 3782-3788	11.5	13
273	Defect-free thin InAs nanowires grown using molecular beam epitaxy. <i>Nanoscale</i> , 2016 , 8, 1401-6	7.7	13
272	Confinement of chemisorbed phosphates in a controlled nanospace with three-dimensional mesostructures. <i>Chemistry - A European Journal</i> , 2013 , 19, 5578-85	4.8	13
271	Microstructure and Properties of a Deformation-Processed Cu-Cr-Ag In Situ Composite by Directional Solidification. <i>Journal of Materials Engineering and Performance</i> , 2013 , 22, 3723-3727	1.6	13
270	Microstructural and chemical characterization of ordered structure in yttrium doped ceria. <i>Microscopy and Microanalysis</i> , 2013 , 19, 102-10	0.5	13
269	Diffusion and segregation along grain boundary at the electrolytellnode interface in IT-SOFC. <i>Solid State Ionics</i> , 2011 , 191, 55-60	3.3	13
268	Tadpole shaped Ge0.96Mn0.04 magnetic semiconductors grown on Si. <i>Applied Physics Letters</i> , 2010 , 96, 051905	3.4	13
267	CdS/CdSe lateral heterostructure nanobelts by a two-step physical vapor transport method. <i>Nanotechnology</i> , 2010 , 21, 145602	3.4	13
266	Effects of Al content on porous Felal alloys. Powder Metallurgy, 2009, 52, 158-163	1.9	13
265	Atomic composition profile change of SiGe islands during Si capping. <i>Applied Physics Letters</i> , 2006 , 89, 103108	3.4	13
264	The application of the cathodic arc to plasma assisted chemical vapor deposition of carbon. <i>Journal of Applied Physics</i> , 1996 , 79, 1563-1568	2.5	13
263	An electron diffraction and microscopy investigation of quasi-periodic Ta-Al superlattices. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1992 , 66, 229-237		13
262	Chemoselective and Continuous Flow Hydrogenations in Thin Films Using a Palladium Nanoparticle Catalyst Embedded in Cellulose Paper <i>ACS Applied Bio Materials</i> , 2019 , 2, 488-494	4.1	13
261	Superconductivity and magnetotransport of single-crystalline NbSe nanoplates grown by chemical vapour deposition. <i>Nanoscale</i> , 2017 , 9, 16591-16595	7.7	12
260	Improved mechanical property of nanolaminated graphene (reduced graphene oxide)/AlMgBi composite rendered by facilitated ageing process. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 787, 139541	5.3	12
259	Morphology and Texture Engineering Enhancing Thermoelectric Performance of Solvothermal Synthesized Ultralarge SnS Microcrystal. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2192-2199	6.1	12
258	Polarity driven simultaneous growth of free-standing and lateral GaAsP epitaxial nanowires on GaAs (001) substrate. <i>Applied Physics Letters</i> , 2013 , 103, 223104	3.4	12
257	Ni3C-assisted growth of carbon nanofibres 300 LC by thermal CVD. <i>Nanotechnology</i> , 2014 , 25, 325602	3.4	12

256	Single crystal titanatellirconate nanoleaf: Synthesis, growth mechanism and enhanced photocatalytic hydrogen evolution properties. <i>CrystEngComm</i> , 2012 , 14, 1874	3.3	12
255	Synthesis and characterization of TiO2-incorporated silica foams. <i>Journal of Materials Science</i> , 2009 , 44, 6484-6489	4.3	12
254	Taper-free and kinked germanium nanowires grown on silicon via purging and the two-temperature process. <i>Nanotechnology</i> , 2012 , 23, 115603	3.4	12
253	Misfit dislocations generated from inhomogeneous sources and their critical thicknesses in a InGaAs/GaAs heterostructure grown by molecular beam epitaxy. <i>Applied Physics Letters</i> , 1997 , 70, 3134-	-31136	12
252	Comparison between Y-doped ceria and Ho-doped ceria: Electrical conduction and microstructures. <i>Renewable Energy</i> , 2008 , 33, 197-200	8.1	12
251	Dislocation-induced changes in quantum dots: Step alignment and radiative emission. <i>Applied Physics Letters</i> , 1999 , 74, 2301-2303	3.4	12
250	Twin structures, transformation and symmetry of superconducting Y 1Ba2Cu3O7☑, observed by transmission electron microscopy. <i>Philosophical Magazine Letters</i> , 1988 , 57, 157-163	1	12
249	In3Se4 and S-doped In3Se4 nano/micro-structures as new anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2015 , 3, 7560-7567	13	11
248	Unequal P Distribution in Nanowires and the Planar Layer during GaAsP Growth on GaAs {111}B by Metal@rganic Chemical Vapor Deposition. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19234-19238	3.8	11
247	Highly ordered cubic mesoporous materials with the same symmetry but tunable pore structures. <i>Langmuir</i> , 2012 , 28, 16382-92	4	11
246	Criterion to control self-propagation high temperature synthesis for porous TiAl intermetallics. <i>Powder Metallurgy</i> , 2011 , 54, 404-407	1.9	11
245	Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process. <i>Journal of Crystal Growth</i> , 2011 , 316, 137-144	1.6	11
244	Fabrication and visible emission of single-crystal diameter-modulated gallium phosphide nanochains. <i>Journal of Applied Physics</i> , 2010 , 107, 124321	2.5	11
243	Superstructure formation and variation in Ni-GDC cermet anodes in SOFC. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 9685-90	3.6	11
242	Growth and optical properties of stacked-pyramid zinc sulfide architectures. <i>CrystEngComm</i> , 2011 , 13, 5885	3.3	11
241	Microstructural characterization of Ce1⊠TbxO2Ц0.60 Æ Æ0.90) sintered samples. <i>Materials</i> Research Bulletin, 2008 , 43, 759-764	5.1	11
240	Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C. <i>Journal of Materials Research</i> , 2008 , 23, 72-77	2.5	11
239	Thermoelectric Coolers: Progress, Challenges, and Opportunities Small Methods, 2022, e2101235	12.8	11

238	Structural Evolution of High-Performance Mn-Alloyed Thermoelectric Materials: A Case Study of SnTe. <i>Small</i> , 2021 , 17, e2100525	11	11
237	Inclusion Characterization and Formation Mechanisms in Spring Steel Deoxidized by Silicon. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019 , 50, 732-747	2.5	11
236	Enhanced mechanical properties and oxidation resistance of tungsten carbide-cobalt cemented carbides with aluminum nitride additions. <i>Ceramics International</i> , 2017 , 43, 6603-6606	5.1	10
235	Surfactant-free Fabrication of Fullerene C60 Nanotubules Under Shear. <i>Angewandte Chemie</i> , 2017 , 129, 8518-8521	3.6	10
234	Vortex fluidic mediated transformation of graphite into highly conducting graphene scrolls. <i>Nanoscale Advances</i> , 2019 , 1, 2495-2501	5.1	10
233	Defect-free zinc-blende structured InAs nanowires realized by in situ two V/III ratio growth in molecular beam epitaxy. <i>Nanoscale</i> , 2015 , 7, 12592-7	7.7	10
232	Reveal the size effect on the plasticity of ultra-small sized Ag nanowires with in situ atomic-scale microscopy. <i>Journal of Alloys and Compounds</i> , 2016 , 676, 377-382	5.7	10
231	Co-doped Sb2Te3 paramagnetic nanoplates. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 521-525	7.1	10
230	Lattice bending in monocrystalline GaAs induced by nanoscratching. <i>Materials Letters</i> , 2012 , 80, 187-19	003.3	10
229	Thin-walled BCN ternary microtubes: from synthesis to electrical, cathodoluminescence and field-emission properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8134		10
228	Amorphous SiOx nanowires catalyzed by metallic Ge for optoelectronic applications. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 3978-3984	5.7	10
227	Synthesis of high-Curie-temperature Fe0.02Ge0.98 quantum dots. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11425-7	16.4	10
226	Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer. <i>Journal of Applied Physics</i> , 2011 , 110, 114304	2.5	10
225	Cr metal thin film memory. <i>Journal of Applied Physics</i> , 2011 , 110, 054504	2.5	10
224	Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates. <i>Nanotechnology</i> , 2012 , 23, 415702	3.4	10
223	Aluminum induced in situ crystallization of amorphous SiC. <i>Applied Physics Letters</i> , 2009 , 94, 181909	3.4	10
222	Microstructures and mechanical properties of Ce1NCaxO2N (x=0.05, 0.1, 0.2) with different sintering temperatures. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 669-675	6	10
221	Contribution of electron precession to the study of perovskites displaying small symmetry departures from the ideal cubic ABO3 perovskite: applications to the LaGaO3 and LSGM perovskites. <i>Journal of Microscopy</i> , 2008 , 232, 7-26	1.9	10

220	Metalorganic chemical vapor deposition of GaAsN epilayers: microstructures and optical properties. <i>Journal of Crystal Growth</i> , 2004 , 264, 92-97	1.6	10
219	Transmission electron microscopy characterization of secondary defects created by MeV Si, Ge, and Sn implantation in silicon. <i>Journal of Applied Physics</i> , 2000 , 88, 1312-1318	2.5	10
218	Lomertottrell misfit dislocations in [001] In0.2Ga0.8As/GaAs single heterostructures. <i>Applied Physics Letters</i> , 1996 , 69, 1083-1085	3.4	10
217	Surface-States-Modulated High-Performance InAs Nanowire Phototransistor. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6413-6419	6.4	10
216	Unexpected formation of a hierarchical structure in ternary InGaAs nanowires via "one-pot" growth. <i>Nanoscale</i> , 2017 , 9, 16960-16967	7.7	9
215	Surface-energy engineered Bi-doped SnTe nanoribbons with weak antilocalization effect and linear magnetoresistance. <i>Nanoscale</i> , 2016 , 8, 19383-19389	7.7	9
214	Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks. <i>Nano Letters</i> , 2016 , 16, 4189-93	11.5	9
213	Mirror-twin induced bicrystalline InAs nanoleaves. <i>Nano Research</i> , 2016 , 9, 766-773	10	9
212	Light-Induced Positive and Negative Photoconductances of InAs Nanowires toward Rewritable Nonvolatile Memory. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1825-1831	4	9
211	Inverted vortex fluidic exfoliation and scrolling of hexagonal-boron nitride RSC Advances, 2019 , 9, 220)7 4 22(079
210	A focused review on nanoscratching-induced deformation of monocrystalline silicon. <i>International Journal of Surface Science and Engineering</i> , 2013 , 7, 51	1	9
209	Attraction of semiconductor nanowires: An in situ observation. <i>Acta Materialia</i> , 2013 , 61, 7166-7172	8.4	9
208	Texture evolution in an electrodeposited nanocrystalline Nife alloy during growth-plane rolling and cross-section rolling. <i>Scripta Materialia</i> , 2012 , 67, 483-486	5.6	9
207	The diffusions and associated interfacial layer formation between thin film electrolyte and cermet anode in IT-SOFC. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9679-9684	5.7	9
206	Transmission electron microscopy characterization of the deformation of CdZnTe single crystals induced by nanoscratching. <i>Scripta Materialia</i> , 2011 , 65, 392-395	5.6	9
205	An unexpected plasticization phenomenon and a constant of the change rate of viscoelastic properties for polymers during nanoindentation test. <i>Journal of Applied Polymer Science</i> , 2011 , 122, 88	5- 8 90	9
204	Formation of Hierarchical InAs Nanoring / GaAs Nanowire Heterostructures. <i>Angewandte Chemie</i> , 2009 , 121, 794-797	3.6	9
203	Effect of Mn concentration and growth temperature on nanostructures and magnetic properties of Ge1\(\text{M} \) Mnx grown on Si. Journal of Crystal Growth, 2010 , 312, 3034-3039	1.6	9

(2012-2007)

202	Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires. <i>New Journal of Physics</i> , 2007 , 9, 137-137	2.9	9
2 01	Formation and growth mechanism of tungsten oxide microtubules. <i>Chemical Physics Letters</i> , 2006 , 427, 350-355	2.5	9
200	Strain and defect microstructure in ion-irradiated GeSi/Si strained layers as a function of annealing temperature. <i>Applied Physics Letters</i> , 1998 , 73, 838-840	3.4	9
199	Island shape instabilities and surfactant-like effects in the growth of InGaAs/GaAs quantum dots. <i>Thin Solid Films</i> , 1999 , 357, 40-45	2.2	9
198	Temperature-dependent generation of misfit dislocations in In0.2Ga0.8As/GaAs single heterostructures. <i>Applied Physics Letters</i> , 1996 , 68, 673-674	3.4	9
197	Misfit dislocations lying along <100> in [001] GaAs/In0.25Ga0.75As/GaAs quantum well heterostructures. <i>Applied Physics Letters</i> , 1994 , 65, 1647-1649	3.4	9
196	Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. <i>Applied Physics Reviews</i> , 2021 , 8, 041404	17.3	9
195	Continuous flow synthesis of phosphate binding h-BN@magnetite hybrid material <i>RSC Advances</i> , 2018 , 8, 40829-40835	3.7	9
194	Phase purification of GaAs nanowires by prolonging the growth duration in MBE. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5257-5262	7.1	8
193	A thermodynamic structural model of graphene oxide. <i>Journal of Applied Physics</i> , 2017 , 122, 145101	2.5	8
192	In-situ observation of cooperative grain boundary sliding and migration in the nano-twinned nanocrystalline-Au thin-films. <i>Scripta Materialia</i> , 2020 , 180, 97-102	5.6	8
191	Atomic Insights into Phase Evolution in Ternary Transition-Metal Dichalcogenides Nanostructures. <i>Small</i> , 2018 , 14, e1800780	11	8
190	Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates. <i>Nano Research</i> , 2018 , 11, 696-706	10	8
189	Long wavelength emissions of Se4+-doped In2O3 hierarchical nanostructures. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6529	7.1	8
188	Synthesis and hydrogen absorption of high-specific-surface ultrafine theta-Al2O3 nanowires. Journal of Crystal Growth, 2013 , 382, 52-55	1.6	8
187	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). <i>Advanced Materials</i> , 2014 , 26, 8232-823	2 ²⁴	8
186	Variation of exciton emissions of ZnO whiskers reversibly tuned by axial tensile strain. <i>Optics Express</i> , 2014 , 22, 4000-5	3.3	8
185	Behavior of Au-Si droplets in Si(001) at high temperatures. <i>Applied Physics Letters</i> , 2012 , 101, 053104	3.4	8

184	Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. <i>Nanotechnology</i> , 2010 , 21, 375701	3.4	8
183	Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers. <i>Nanotechnology</i> , 2010 , 21, 295602	3.4	8
182	Solving hierarchical helical mesostructures by electron tomography. <i>Chemical Communications</i> , 2010 , 46, 1688-90	5.8	8
181	High quality InAs quantum dots grown on patterned Si with a GaAs buffer layer. <i>Nanotechnology</i> , 2009 , 20, 305301	3.4	8
180	Formation of planar defects over GeSi islands in Si capping layer grown at low temperature. <i>Journal of Applied Physics</i> , 2009 , 105, 024307	2.5	8
179	Effect of cooling rate on microstructure and deformation behavior of Ti-based metallic glassy/crystalline powders. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2010 , 527, 5750-5754	5.3	8
178	Crystallographically oriented Zn nanocrystals formed in ZnO by Mn+-implantation. <i>Applied Physics Letters</i> , 2008 , 93, 131919	3.4	8
177	Synthesis of tungsten oxide tapered needles with nanotips. <i>Journal of Crystal Growth</i> , 2007 , 303, 574-57	79 .6	8
176	Cooling rate dependent as-cast microstructure and mechanical properties of Zr-based metallic glasses. <i>Journal of Materials Science</i> , 2007 , 42, 4233-4239	4.3	8
175	Compositional dependence of electrical conductivity of Ce1☐TbxO2☐0?x?1). Renewable Energy, 2008 , 33, 331-335	8.1	8
174	High-tensile-strength and ductile novel Ti-Fe-N-B alloys reinforced with TiB nanowires. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 708, 285-290	5.3	8
173	High-quality epitaxial wurtzite structured InAs nanosheets grown in MBE. <i>Nanoscale</i> , 2020 , 12, 271-276	7.7	8
172	Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics. <i>ACS Applied Materials & Distriction (Conductivity in ACS ACS Applied Materials & Distriction (Conductivity in ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>) ⁹ 3 8 37	98
171	Real-time observation of the thermally-induced phase transformation in GeTe and its thermal expansion properties. <i>Acta Materialia</i> , 2019 , 165, 327-335	8.4	8
170	Thermoelectrics for medical applications: Progress, challenges, and perspectives. <i>Chemical Engineering Journal</i> , 2022 , 437, 135268	14.7	8
169	Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime. <i>Nanoscale</i> , 2019 , 11, 6859-6865	7.7	7
168	BN-coated Ca(1-x)Sr(x)S:Eu solid-solution nanowires with tunable red light emission. <i>Nanotechnology</i> , 2013 , 24, 405701	3.4	7
167	Direct realizing the growth direction of epitaxial nanowires by electron microscopy. <i>Science China Materials</i> , 2015 , 58, 433-440	7.1	7

(2015-2013)

166	Microanalysis of a grain boundary's blocking effect in lanthanum silicate electrolyte for intermediate-temperature solid oxide fuel cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 5307-1	13 ^{9.5}	7	
165	Effects of growth rate on InP nanowires morphology and crystal structure. <i>Journal of Crystal Growth</i> , 2013 , 383, 100-105	1.6	7	
164	Mn distribution behaviors and magnetic properties of GeMn films grown on Si (001) substrates. Journal of Crystal Growth, 2009 , 311, 2147-2150	1.6	7	
163	Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, FeNi, and CoNi doped tungsten oxide. <i>Journal of Alloys and Compounds</i> , 2009 , 482, 61-66	5.7	7	
162	A TEM study on the crystallization behavior of an yttrium-doped Zr-based bulk metallic glass. <i>Intermetallics</i> , 2007 , 15, 961-967	3.5	7	
161	Cooling rate effects on the microstructure and phase formation in Zr51Cu20.7Ni12Al16.3 bulk metallic glass. <i>Science and Technology of Advanced Materials</i> , 2006 , 7, 806-811	7.1	7	
160	Misfit-dislocation generation by dissociated dislocations in quantum-well heterostructures. <i>Physical Review B</i> , 1994 , 49, 8086-8095	3.3	7	
159	Microstructural observations of Ta/Al superlattices by TEM. <i>Physica Status Solidi A</i> , 1992 , 130, 373-381		7	
158	Microstructure and Strengthening Model of Cu-Fe In-Situ Composites. <i>Materials</i> , 2020 , 13,	3.5	7	
157	Superstructured Macroporous Carbon Rods Composed of Defective Graphitic Nanosheets for Efficient Oxygen Reduction Reaction. <i>Advanced Science</i> , 2021 , 8, e2100120	13.6	7	
156	Research Update: Strain and composition effects on ferromagnetism of Mn0.05Ge0.95 quantum dots. <i>APL Materials</i> , 2016 , 4, 040701	5.7	7	
155	Vapour-solid growth of MoxW1-xTe2 nanobelts by a facile chemical vapour deposition method. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 926-930	5.7	7	
154	Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy. <i>Nano Research</i> , 2019 , 12, 2718-2722	10	6	
153	Effectively restricting MnSi precipitates for simultaneously enhancing the Seebeck coefficient and electrical conductivity in higher manganese silicide. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7212-7218	8 ^{7.1}	6	
152	In situ TEM observation of the vapor-solid-solid growth of InAs nanowires. <i>Nanoscale</i> , 2020 , 12, 11711-	1 1₇7/ 1 7	6	
151	Fabrication of individual carbon nanotubes and their arrays in a transmission electron microscope. <i>Carbon</i> , 2016 , 100, 435-440	10.4	6	
150	In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt. <i>Ultramicroscopy</i> , 2018 , 195, 69-73	3.1	6	
149	Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy. <i>Nanotechnology</i> , 2015 , 26, 255601	3.4	6	

148	New insight into ordered cage-type mesostructures and their pore size determination by electron tomography. <i>Langmuir</i> , 2015 , 31, 2545-53	4	6
147	Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions. <i>Nanoscale Research Letters</i> , 2011 , 6, 624	5	6
146	Crystalline structures and misfit strain inside Er silicide nanocrystals self-assembled on Si(001) substrates. <i>Nanotechnology</i> , 2011 , 22, 245707	3.4	6
145	Poly(vinylidene Fluoride)/Microcrystalline Cellulose Nanocomposites with Enhanced Compatibility and Properties. <i>Key Engineering Materials</i> , 2011 , 471-472, 355-360	0.4	6
144	Synthesis and characterization of porous FeØ5 wt.% Al alloy with controllable pore structure. <i>Powder Metallurgy and Metal Ceramics</i> , 2010 , 49, 183-192	0.8	6
143	Investigation of oval defects in InGaAs/GaAs strained-layer heterostructures using cathodoluminescence and wavelength dispersive spectroscopy. <i>Applied Physics Letters</i> , 1998 , 73, 3899-3	3 90 1	6
142	Room temperature Si Egrowth on Ge incorporating high-K dielectric for metal oxide semiconductor applications. <i>Applied Physics Letters</i> , 2008 , 93, 023501	3.4	6
141	Space-charge trap mediated conductance blockade in tunnel junctions with half-metallic electrodes. <i>Applied Physics Letters</i> , 2008 , 93, 192507	3.4	6
140	A new type of dissociated misfit dislocation in [001] ZnTe/GaAs strained-layer heterostructures. <i>Applied Physics Letters</i> , 1998 , 72, 2424-2426	3.4	6
139	In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13056-13064	13	6
138	Strain Gradient Modulated Exciton Evolution and Emission in ZnO Fibers. <i>Scientific Reports</i> , 2017 , 7, 406	5 5/8 9	5
137	Free-Standing InAs Nanobelts Driven by Polarity in MBE. <i>ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. Driven by Polar</i>	9.5	5
136	Superlattice of Fe(x)Ge(1-x) nanodots and nanolayers for spintronics application. <i>Nanotechnology</i> , 2014 , 25, 505702	3.4	5
135	Hot-Filament-Assisted Growth of Straight SiOx Nanowires for Optoelectronic Application. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 14354-14361	3.8	5
134	Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2458-2461	3.3	5
133	Tunable electric and magnetic resonances in multilayered metal/dielectric nanoplates at optical frequencies. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 345102	3	5
132	Electric-field controlled ferromagnetism in MnGe magnetic quantum dots. <i>Nano Reviews</i> , 2011 , 2,		5
131	Metastable nanocrystallization behavior of Ti-based metallic glassy powders during post-heating. <i>Scripta Materialia</i> , 2010 , 63, 764-767	5.6	5

130	Microworms self-assembled by boron nitride horns for optoelectronic applications. <i>Chemical Engineering Journal</i> , 2010 , 165, 714-719	14.7	5	
129	Shape preservation of self-assembled SiGe quantum rings during Si capping. <i>Nanotechnology</i> , 2007 , 18, 115708	3.4	5	
128	Synthesis and microstructural characterization of Ce1-xTb(x)O2-delta (0 Journal of Nanoscience and Nanotechnology, 2007 , 7, 2521-5	1.3	5	
127	Compositional design and microstructure analysis of Zr-based bulk metallic glasses. <i>Transactions of Nonferrous Metals Society of China</i> , 2007 , 17, 1433-1440	3.3	5	
126	The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled AlPb alloy during sintering. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 434, 352-359	5.3	5	
125	Growth direction dependence on strain relief by misfit dislocations in strained-layer heterostructures. <i>Thin Solid Films</i> , 1993 , 235, 6-9	2.2	5	
124	A transmission electron microscopy study on metastable phases in the Li2O-TiO2 system. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1988 , 57, 103-110		5	
123	Comments on "Characterization of the Fe-Al Interfacial Layer in a Commercial Hot-dip Galvanized Coating" <i>ISIJ International</i> , 1998 , 38, 506-507	1.7	5	
122	Correlation Between Microstructural Architecture and Mechanical Behavior of Single-Walled Carbon Nanotube-Aluminum Composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2020 , 51, 545-551	2.3	5	
121	Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. <i>Nano Research</i> , 2020 , 13, 3019-3024	10	5	
120	Ultrahigh Aspect Ratio TiB Nanowhisker-Reinforced Titanium Matrix Composites as Lightweight and Low-Cost Replacements for Superalloys. <i>ACS Applied Nano Materials</i> , 2020 , 3, 8208-8215	5.6	5	
119	Achieving enhanced thermoelectric performance of Ca1kllLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering. <i>Chemical Engineering Journal</i> , 2021 , 408, 127364	14.7	5	
118	Influences of Alternating Magnetic Fieldson the Growth Behavior and Distribution of the Primary Fe Phasein Cu-14Fe Alloys during the Solidification Process. <i>Metals</i> , 2018 , 8, 571	2.3	5	
117	Intercalation-Induced Disintegrated Layer-By-Layer Growth of Ultrathin Ternary Mo(TeS) Plates. <i>ACS Applied Materials & District Materi</i>	9.5	4	
116	Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field. <i>Metals and Materials International</i> , 2018 , 24, 1275-1284	2.4	4	
115	Formation Mechanism of Al2O3-Containing Inclusions in Al-Deoxidized Spring Steel. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2019 , 50, 2205-2220	2.5	4	
114	Reducing electric current and energy consumption of spark plasma sintering via punch configuration design. <i>Ceramics International</i> , 2017 , 43, 17225-17228	5.1	4	
113	Effect of Alternating Magnetic Field on the Microstructure and Solute Distribution of Cu–14Fe Composites. <i>Materials Transactions</i> , 2015 , 56, 2058-2062	1.3	4	

112	Nanowires for optoelectronic device applications. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 2678-2682		4
111	Congenerous and heterogeneous brazing of porous FeAl intermetallics. <i>Powder Metallurgy</i> , 2011 , 54, 142-147	1.9	4
110	Microstructural and chemical aspects of working-temperature aged Ca-doped CeO2. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 2505-2513	6	4
109	Siliceous Nanopods from a Compromised Dual-Templating Approach. <i>Angewandte Chemie</i> , 2007 , 119, 8733-8736	3.6	4
108	Effect of MgO in ZnO films grown on nitrided sapphires. <i>Journal of Crystal Growth</i> , 2007 , 305, 74-77	1.6	4
107	The stability of faceted SiGe quantum dots capped with a thin Si layer. <i>Nanotechnology</i> , 2007 , 18, 02540	4 .4	4
106	New crystalline phases formed in a slowly-cooled Zr-based metallic glass. <i>Journal of Alloys and Compounds</i> , 2007 , 433, 120-124	5.7	4
105	Precise determination of the periodicity for Mo/Si and W/C metallic multilayers by electron and x-ray diffraction. <i>Journal of Applied Physics</i> , 1995 , 77, 167-171	2.5	4
104	The geometry of misfit dislocations with respect to the strained interface in [001] In0.1Ga0.9As/GaAs single heterostructures. <i>Journal of Applied Physics</i> , 1994 , 75, 7317-7322	2.5	4
103	Glide of Misfit Dislocations through Multi-Layer Heterostructures. <i>Physica Status Solidi A</i> , 1994 , 145, 133	3-143	4
102	Rare-Earth Nd Inducing Record-High Thermoelectric Performance of (GeTe)85(AgSbTe2)15. <i>Energy Material Advances</i> , 2021 , 2021, 1-8	1	4
101	Thickness-Controlled Three-Dimensional Dirac Semimetal for Scalable High-Performance Terahertz Optoelectronics. <i>ACS Photonics</i> , 2021 , 8, 1689-1697	6.3	4
100	A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13573-13584	7.1	4
99	Understanding the Formation and Evolution of Oxide Inclusions in Si-Deoxidized Spring Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019 , 50, 1862-1877	2.5	3
98	Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures. <i>Nanoscale Research Letters</i> , 2015 , 10, 108	5	3
97	Synergistic synthesis of quasi-monocrystal CdS nanoboxes with high-energy facets. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23106-23112	13	3
96	TiB Nanowhisker Reinforced Titanium Matrix Composite with Improved Hardness for Biomedical Applications. <i>Nanomaterials</i> , 2020 , 10,	5.4	3
95	Interfacial properties and their impact on the tensile behavior of nanolaminated single-walled carbon nanotube-aluminum composite. <i>Materialia</i> , 2020 , 12, 100797	3.2	3

(2012-2020)

94	Enhanced Damping Capacity in Graphene-Al Nanolaminated Composite Pillars Under Compression Cyclic Loading. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2020 , 51, 1463-1468	2.3	3	
93	Temperature-dependent side-facets of GaAs nanopillars. <i>Semiconductor Science and Technology</i> , 2016 , 31, 094004	1.8	3	
92	Effect of Sn Addition on Epitaxial GaAs Nanowire Grown at Different Temperatures in Metal Drganic Chemical Vapor Deposition. <i>Crystal Growth and Design</i> , 2019 , 19, 5314-5319	3.5	3	
91	Understanding the Effect of Catalyst Size on the Epitaxial Growth of Hierarchical Structured InGaP Nanowires. <i>Nano Letters</i> , 2019 , 19, 8262-8269	11.5	3	
90	In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy. <i>Angewandte Chemie</i> , 2019 , 131, 18800-18806	3.6	3	
89	Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2014 , 104, 022108	3.4	3	
88	Preferential nucleation and growth of InAs/GaAs(0 0 1) quantum dots on defected sites by droplet epitaxy. <i>Scripta Materialia</i> , 2013 , 69, 638-641	5.6	3	
87	2014,		3	
86	Selectively grown GaAs nanodisks on Si(100) by molecular beam epitaxy. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 02C111	1.3	3	
85	Morphology and Microstructure of InAs Nanowires on GaAs Substrates Grown by Molecular Beam Epitaxy. <i>Chinese Physics Letters</i> , 2014 , 31, 098101	1.8	3	
84	Can misfit dislocations be located above the interface of InAs/GaAs (001) epitaxial quantum dots?. <i>Nanoscale Research Letters</i> , 2012 , 7, 486	5	3	
83	Thickness dependence of magnetic and transport properties in organic-CoFe discontinuous multilayers. <i>Journal of Applied Physics</i> , 2010 , 107, 09E307	2.5	3	
82	Direct-current-induced transformation at the interface between platinum anode and holmium-doped ceria electrolyte. <i>Journal of Applied Physics</i> , 2009 , 105, 113524	2.5	3	
81	Visible-light photoresponsive heterojunctions of (Nb I iBi) and (Bi/Bi-O) nanoparticles. <i>Electrochemistry Communications</i> , 2009 , 11, 509-514	5.1	3	
80	Increase the Mechanical Performance of Polyvinylidene Fluoride (PVDF). <i>Advanced Materials Research</i> , 2011 , 393-395, 144-148	0.5	3	
79	Growth and properties of IIIIV compound semiconductor heterostructure nanowires. <i>Semiconductor Science and Technology</i> , 2012 , 27, 059501	1.8	3	
78	Fabrication of crystal Bill Si-SiOx core-shell/Au-SiOx peapod-like axial double heterostructures for optoelectronic applications. <i>Nanotechnology</i> , 2012 , 23, 305603	3.4	3	
77	Rheological Behaviors of Poly(Vinylidene Fluoride)/ B ud-Branched[Nanotubes Nanocomposites. <i>Journal of Macromolecular Science - Physics</i> , 2012 , 51, 1498-1508	1.4	3	

		Jı	n Z ou
76	Temperature and Bias-Assisted Transport Properties of LSMO/AlO/CoFeB Magnetic Tunnel Junction. <i>IEEE Transactions on Magnetics</i> , 2010 , 46, 2383-2386	2	3
75	Diffraction Behaviour of Three-Component Fibonacci Ta/Al Multilayer Films. <i>Journal of Applied Crystallography</i> , 1997 , 30, 114-117	3.8	3
74	Facile synthesis and characterization of potassium-doped MnO2 nanowires. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 2011-5	1.3	3
73	Solving Complex Concentric Circular Mesostructures by Using Electron Tomography. <i>Angewandte Chemie</i> , 2008 , 120, 6772-6775	3.6	3
72	Advances in conducting polymer-based thermoelectric materials and devices 2021,		3
71	Effect of Carbon on the Microstructure of a Cu-Fe Alloy. <i>Solid State Phenomena</i> , 2018 , 279, 49-54	0.4	3
7º	The effect of Sn addition on GaAs nanowire grown by vapor-liquid-solid growth mechanism. <i>Nanotechnology</i> , 2018 , 29, 465601	3.4	3
69	Nanostructured Cost-Effective and Energy-Efficient Thermoelectric Materials 2017 , 547-568		2
68	Effects of C Addition on the Microstructures of As-Cast Cu-Fe-P Alloys. <i>Materials</i> , 2019 , 12,	3.5	2
67	Crowding-out effect strategy using AgCl for realizing a super low lattice thermal conductivity of SnTe. Sustainable Materials and Technologies, 2020, 25, e00183	5.3	2
66	GeSi virtual-layer enhanced ferromagnetism in self-assembled MnGe quantum dots grown on Si wafers by molecular beam epitaxy. <i>Nanoscale</i> , 2020 , 12, 3997-4004	7.7	2
65	Microstructure evolution of yttria-doped ceria in reducing atmosphere. <i>Renewable Energy</i> , 2013 , 50, 494-497	8.1	2
64	Formation of GaAs/GaSb Core-Shell Heterostructured Nanowires Grown by Molecular-Beam Epitaxy. <i>Crystals</i> , 2017 , 7, 94	2.3	2
63	Incubational domain characterization in lightly doped ceria. <i>Journal of Solid State Chemistry</i> , 2012 , 192, 28-33	3.3	2
62	Probing the valence band structure of wurtzite InP nanowires by photoluminescence excitation spectroscopy 2011 ,		2
61	Growth of ZnS heterostructures for optoelectronic applications 2010 ,		2
60	Microstructures of YBa1.85Eu0.15Cu3O7thuperconducting films grown on SrTiO3 and YSZ substrates. <i>Journal of Crystal Growth</i> , 2011 , 318, 580-585	1.6	2

III-V compound semiconductor nanowires 2009,

(2020-2009)

58	Composition and strain measurements of Ge(Si)/Si(001) islands by HRTEM. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2753-7	1.3	2	
57	Nanomechanical Properties and Nanostructure of CMG and CMP Machined Si Substrates. <i>Key Engineering Materials</i> , 2008 , 381-382, 525-528	0.4	2	
56	Deformation of Monocrystalline Silicon under Nanoscratching. <i>Advanced Materials Research</i> , 2008 , 41-42, 15-19	0.5	2	
55	Deep void formation mechanism in Si(100) during its carbonization reaction with C2H2. <i>Thin Solid Films</i> , 2007 , 515, 6824-6826	2.2	2	
54	III-V nanowires for optoelectronics 2006,		2	
53	Enhanced optical properties of the GaAsN/GaAs quantum-well structure by the insertion of InAs monolayers. <i>Applied Physics Letters</i> , 2004 , 84, 2536-2538	3.4	2	
52	[001] zone-axis bright-field diffraction contrast from coherent Ge(Si) islands on Si(001). <i>Ultramicroscopy</i> , 2004 , 98, 239-47	3.1	2	
51	Carrier transfer between V-grooved quantum wire and vertical quantum well. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2001 , 280, 77-80	2.3	2	
50	Investigation of threading dislocation blocking in strained-layer InGaAs/GaAs heterostructures using scanning cathodoluminescence microscopy. <i>Journal of Applied Physics</i> , 2000 , 88, 1307-1311	2.5	2	
49	Optical properties of arsenic ions implanted GaAs/AlGaAs V-grooved quantum wires. <i>Journal of Applied Physics</i> , 2000 , 88, 2519-2522	2.5	2	
48	Achieving High-Performance Ge Bi Te Thermoelectrics via LaB -Alloying-Induced Band Engineering and Multi-Scale Structure Manipulation. <i>Small</i> , 2021 , e2105923	11	2	
47	Effects of an Alternating Magnetic Field/Ag Multi-Alloying Combined Solidification Process on Cu?14Fe Alloy. <i>Materials</i> , 2018 , 11,	3.5	2	
46	High-Performance Thermoelectric Materials for Solar Energy Application 2018, 3-38		2	
45	Anomalous Photoelectrical Properties through Strain Engineering Based on a Single Bent InAsSb Nanowire. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 5691-5698	9.5	2	
44	High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting. <i>Journal of Materials Science and Technology</i> , 2022 , 118, 114-127	9.1	2	
43	A Solvothermal Synthetic Environmental Design for High-Performance SnSe-Based Thermoelectric Materials. <i>Advanced Energy Materials</i> ,2200670	21.8	2	
42	Hollow Nanostructures: Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures (Adv. Mater. 38/2019). <i>Advanced Materials</i> , 2019 , 31, 1970272	24	1	
41	MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs. <i>Chinese Physics Letters</i> , 2020 , 37, 038101	1.8	1	

40	Advances in functional materials. <i>Materials Technology</i> , 2015 , 30, A1-A1	2.1	1
39	The Research on Ni-Based Ammonia Decomposition Catalyst. <i>Applied Mechanics and Materials</i> , 2014 , 644-650, 5364-5367	0.3	1
38	Growth and memory effect of Er-stabilized EMnO2 films grown on Si substrates. <i>Materials Research Express</i> , 2014 , 1, 036302	1.7	1
37	Nanoparticles: Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery (Adv. Mater. 43/2013). <i>Advanced Materials</i> , 2013 , 25, 6232-6232	24	1
36	Effect of Nano-Filler Network on the Rheological Behaviours of Poly(vinylidene fluoride) Nanocomposites. <i>Advanced Materials Research</i> , 2011 , 328-330, 1232-1238	0.5	1
35	Nano-structure design of doped ceria solid electrolytes for intermediate temperature operation of solid oxide fuel cell. <i>Transactions of the Materials Research Society of Japan</i> , 2010 , 35, 431-441	0.2	1
34	III-V COMPOUND SEMICONDUCTOR NANOWIRES FOR OPTOELECTRONIC DEVICE APPLICATIONS. International Journal of High Speed Electronics and Systems, 2011 , 20, 131-141	0.5	1
33	Inhomogeneous sources of misfit dislocation generation in In xGa1lkAs/GaAs strained-layer heterostructures grown by molecular beam epitaxy. <i>Micron</i> , 1997 , 28, 309-312	2.3	1
32	Relationship between Microstructure and Ionic Conductivity in Ytterbium Doped Ceria		1
31	Structural, electrical, and optical analysis of ion implanted semi-insulating InP. <i>Journal of Applied Physics</i> , 2004 , 95, 477-482	2.5	1
30	Determination of Al compositional profiles across AlAs/GaAs heterostructural interface at sub-nanometer spatial resolution by thickness fringe imaging. <i>Scripta Materialia</i> , 2002 , 47, 279-283	5.6	1
29	Towards p-type doping of ZnO by ion implantation 2005,		1
28	Synthesis of thermoelectric materials 2021 , 73-103		1
27	Photoelectronic Properties of End-bonded InAsSb Nanowire Array Detector under Weak Light. <i>Nanoscale Research Letters</i> , 2021 , 16, 13	5	1
26	High shear in situ exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. <i>Nanoscale Advances</i> ,	5.1	1
25	Optimal array alignment to deliver high performance in flexible conducting polymer-based thermoelectric devices. <i>Journal of Materials Science and Technology</i> , 2022 , 124, 252-259	9.1	1
24	TiB reinforced lattice structures produced by laser powder bed fusion with high elastic admissible strain. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2022 , 845, 143249	5.3	1
23	The effect of rare earth element doping on thermoelectric properties of GeTe. <i>Chemical Engineering Journal</i> , 2022 , 446, 137278	14.7	1

22	Microstructure and Electrical Resistivity of In Situ Cu-Fe Microcomposites. <i>Journal of Materials Engineering and Performance</i> ,1	1.6	О
21	Formation Mechanisms of Inclusions in Spring Steels. <i>Minerals, Metals and Materials Series</i> , 2017 , 323-3	34 .3	
20	Ultra-large elongation and dislocation behavior of nano-sized tantalum single crystals. <i>AIP Advances</i> , 2017 , 7, 045218	1.5	
19	Spontaneous formation of core-shell GaAsP nanowires with enhanced electrical conductivity 2016 , 463	3-465	
18	Evolution of thin protecting Si-layer on Mn0.5Si0.5 layer at low temperatures. <i>Applied Surface Science</i> , 2015 , 333, 54-58	6.7	
17	The Research on Thermal Residual Stress of SiCp/Al Composites. <i>Advanced Materials Research</i> , 2014 , 852, 127-131	0.5	
16	Microstructure and Properties of Deformation-Processed Cultr In Situ Composites. <i>Advanced Materials Research</i> , 2013 , 690-693, 329-333	0.5	
15	Palladium Catalyzed Defect-free Zinc-Blende Structured InAs Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1551, 95-99		
14	Differences in crystallisation behaviours during cooling and post-heating processes of Ti based metallic powders. <i>Powder Metallurgy</i> , 2013 , 56, 32-37	1.9	
13	Enhanced physical compatibility in manganite/cuprate multilayer with high-quality interface. <i>Thin Solid Films</i> , 2011 , 519, 8338-8342	2.2	
12	NITRIDATION OF SILICON WITH AMMONIA AND NITROGEN. <i>International Journal of Nanoscience</i> , 2010 , 09, 169-174	0.6	
11	Nano-structure design of doped ceria solid electrolytes for intermediate temperature operation of solid oxide fuel cell. <i>Transactions of the Materials Research Society of Japan</i> , 2012 , 20thAnniv, 5-15	0.2	
10	CoreBhell double phase crystal in an yttrium-containing Zr-based bulk metallic glass. <i>Journal of Alloys and Compounds</i> , 2008 , 461, 97-101	5.7	
9	Subsurface Structures of Monocrystalline Silicon Generated by Nanogrinding. <i>Key Engineering Materials</i> , 2008 , 389-390, 465-468	0.4	
8	Investigation of SiO2-SiC Interface by High-Resolution Transmission Electron Microscope. <i>Materials Science Forum</i> , 2006 , 527-529, 975-978	0.4	
7	Failure and Formation of Axial Nanowire Heterostructures in Vapor-Liquid-Solid Growth. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1058, 1		
6	Defects formed during 1 MeV Si ion-irradiation of GeSi/Si strained-layer heterostructures at elevated temperatures. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1999 , 148, 206-210	1.2	
5	Thermo-Responsive Nanomaterials for Thermoelectric Generation. <i>Springer Series in Materials Science</i> , 2020 , 269-293	0.9	

4	Transactions of the Materials Research Society of Japan, 2012 , 37, 389-392	0.2
3	Ge1☑ Mnx-Diluted Magnetic Semiconductor Nanostructures for Spintronics 2012 , 693-731	
2	The Study of Atmospheric Pressure CVD Growth Process of MoxW1-xTe2 Nanobelts for Tuneable Chemical Composition. <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 678, 012149	0.4
1	Axiotaxy driven growth of belt-shaped InAs nanowires in molecular beam epitaxy. <i>Nano Research</i> , 2021 , 14, 2330	10