
Parijat Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2124423/publications.pdf Version: 2024-02-01

ΟλΟΙΙΛΤ ΟΛΟΚΛΟ

#	Article	IF	CITATIONS
1	Cholesterol in GPCR Structures: Prevalence and Relevance. Journal of Membrane Biology, 2022, 255, 99-106.	1.0	15
2	Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. Journal of Lipid Research, 2022, 63, 100206.	2.0	10
3	Effect of Hypoxia on the Function of the Human Serotonin _{1A} Receptor. ACS Chemical Neuroscience, 2022, 13, 1456-1466.	1.7	6
4	Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. Journal of Physical Chemistry B, 2022, 126, 4415-4430.	1.2	3
5	Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2022, 8, 651.	1.5	3
6	Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophysical Reviews, 2021, 13, 101-122.	1.5	36
7	Metabolic Depletion of Sphingolipids Reduces Cell Surface Population of the Human Serotonin _{1A} Receptor due to Impaired Trafficking. ACS Chemical Neuroscience, 2021, 12, 1189-1196.	1.7	5
8	Insights into cellular signaling from membrane dynamics. Archives of Biochemistry and Biophysics, 2021, 701, 108794.	1.4	9
9	Environment-Sensitive Fluorescence of 7-Nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-Labeled Ligands for Serotonin Receptors. Molecules, 2021, 26, 3848.	1.7	5
10	A molecular sensor for cholesterol in the human serotonin _{1A} receptor. Science Advances, 2021, 7, .	4.7	31
11	Metabolic Depletion of Sphingolipids Does Not Alter Cell Cycle Progression in Chinese Hamster Ovary Cells. Journal of Membrane Biology, 2021, , 1.	1.0	0
12	Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean?. Chemistry and Physics of Lipids, 2021, 239, 105120.	1,5	6
13	Effect of tertiary amine local anesthetics on G protein-coupled receptor lateral diffusion and actin cytoskeletal reorganization. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183547.	1.4	3
14	Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin1A Receptor. Biophysical Journal, 2020, 118, 944-956.	0.2	18
15	Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin1A receptor. Chemistry and Physics of Lipids, 2020, 232, 104955.	1.5	4
16	Cell Cycle Dependent Modulation of Membrane Dipole Potential and Neurotransmitter Receptor Activity: Role of Membrane Cholesterol. ACS Chemical Neuroscience, 2020, 11, 2890-2899.	1.7	5
17	Structural Stringency and Optimal Nature of Cholesterol Requirement in the Function of the Serotonin1A Receptor. Journal of Membrane Biology, 2020, 253, 445-457.	1.0	10
18	Selectivity in agonist and antagonist binding to Serotonin1A receptors via G-protein coupling. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183265.	1.4	3

PARIJAT SARKAR

#	Article	lF	CITATIONS
19	Cholesterol interaction motifs in G proteinâ€coupled receptors: Slippery hot spots?. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1481.	6.6	39
20	Exploring Membrane Lipid and Protein Diffusion by FRAP. Springer Protocols, 2020, , 119-141.	0.1	4
21	Differential effects of simvastatin on membrane organization and dynamics in varying phases. Chemistry and Physics of Lipids, 2019, 225, 104831.	1.5	16
22	Exploring membrane organization at varying spatiotemporal resolutions utilizing fluorescence-based approaches: implications in membrane biology. Physical Chemistry Chemical Physics, 2019, 21, 11554-11563.	1.3	13
23	Exploring Endocytosis and Intracellular Trafficking of the Human Serotonin _{1A} Receptor. Biochemistry, 2019, 58, 2628-2641.	1.2	23
24	A collage of cholesterol interaction motifs in the serotonin1A receptor: An evolutionary implication for differential cholesterol interaction. Chemistry and Physics of Lipids, 2019, 221, 184-192.	1.5	9
25	Biophysics of Serotonin and the Serotonin1A Receptor. , 2019, , 3-22.		1
26	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	1.6	42
27	Phosphatidylserine decarboxylase governs plasma membrane fluidity and impacts drug susceptibilities of Candida albicans cells. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2308-2319.	1.4	21
28	GFP fluorescence: A few lesser-known nuggets that make it work. Journal of Biosciences, 2018, 43, 421-430.	0.5	10
29	Constrained dynamics of the sole tryptophan in the third intracellular loop of the serotonin 1 A receptor. Biophysical Chemistry, 2018, 240, 34-41.	1.5	14
30	GFP fluorescence: A few lesser-known nuggets that make it work. Journal of Biosciences, 2018, 43, 421-430.	0.5	3
31	Solubilization of the serotonin 1A receptor monitored utilizing membrane dipole potential. Chemistry and Physics of Lipids, 2017, 209, 54-60.	1.5	4
32	Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion. Scientific Reports, 2017, 7, 4484.	1.6	28
33	Micellar dipole potential is sensitive to sphere-to-rod transition. Chemistry and Physics of Lipids, 2016, 195, 34-38.	1.5	14
34	Dipolar rearrangement during micellization explored using a potential-sensitive fluorescent probe. Chemistry and Physics of Lipids, 2015, 191, 91-95.	1.5	13