Harry A Atwater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2124165/publications.pdf

Version: 2024-02-01

759 papers 61,202 citations

108 h-index 983 237 g-index

769 all docs 769 docs citations

769 times ranked 40965 citing authors

#	Article	IF	CITATIONS
1	Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9, 205-213.	13.3	7,449
2	Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Materials, 2003, 2, 229-232.	13.3	2,207
3	Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 2005, 98, 011101.	1.1	1,660
4	Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2, 517.	5.8	1,464
5	Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 2001, 13, 1501-1505.	11.1	1,463
6	Low-Loss Plasmonic Metamaterials. Science, 2011, 331, 290-291.	6.0	1,267
7	Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics, 2005, 97, 114302.	1.1	1,261
8	Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 2010, 9, 239-244.	13.3	1,085
9	Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, 11, 174-177.	13.3	771
10	Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Letters, 2008, 8, 4391-4397.	4.5	727
11	Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Physical Review B, 2000, 62, R16356-R16359.	1.1	722
12	Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93, .	1.5	705
13	A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy and Environmental Science, 2016, 9, 2354-2371.	15.6	688
14	The Promise of Plasmonics. Scientific American, 2007, 296, 56-62.	1.0	680
15	Design Considerations for Plasmonic Photovoltaics. Advanced Materials, 2010, 22, 4794-4808.	11.1	645
16	Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications, 2014, 5, 5788.	5.8	600
17	Subwavelength integrated photonics. Nature, 2018, 560, 565-572.	13.7	594
18	Light trapping in ultrathin plasmonic solar cells. Optics Express, 2010, 18, A237.	1.7	587

#	Article	IF	Citations
19	Field-effect electroluminescence in silicon nanocrystals. Nature Materials, 2005, 4, 143-146.	13.3	577
20	Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays. Journal of the American Chemical Society, 2011, 133, 1216-1219.	6.6	561
21	Gate-Tunable Conducting Oxide Metasurfaces. Nano Letters, 2016, 16, 5319-5325.	4.5	552
22	Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells. Nano Letters, 2008, 8, 710-714.	4.5	550
23	Negative Refraction at Visible Frequencies. Science, 2007, 316, 430-432.	6.0	545
24	Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano, 2016, 10, 957-966.	7.3	534
25	Plasmonic Color Filters for CMOS Image Sensor Applications. Nano Letters, 2012, 12, 4349-4354.	4.5	531
26	PlasMOStor: A Metalâ^'Oxideâ^'Si Field Effect Plasmonic Modulator. Nano Letters, 2009, 9, 897-902.	4.5	529
27	All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics, 2007, 1, 402-406.	15.6	514
28	Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes. Science, 2010, 327, 185-187.	6.0	489
29	Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters, 2002, 81, 1714-1716.	1.5	486
30	Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators. Nano Letters, 2013, 13, 2541-2547.	4.5	486
31	Frequency tunable near-infrared metamaterials based on VO_2 phase transition. Optics Express, 2009, 17, 18330.	1.7	485
32	Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Letters, 2010, 10, 2111-2116.	4.5	446
33	Optical pulse propagation in metal nanoparticle chain waveguides. Physical Review B, 2003, 67, .	1.1	382
34	Defectâ€related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2. Applied Physics Letters, 1996, 69, 2033-2035.	1.5	377
35	Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability. Nano Letters, 2010, 10, 4222-4227.	4.5	367
36	Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Physical Review B, 2002, 65, .	1.1	365

#	Article	IF	Citations
37	Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells. Nano Letters, 2011, 11, 4239-4245.	4.5	350
38	Rapid self-assembly of brush block copolymers to photonic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14332-14336.	3.3	338
39	Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Letters, 2011, 11, 2195-2201.	4.5	330
40	Light Absorption Enhancement in Thinâ€Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials, 2011, 23, 1272-1276.	11.1	329
41	Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency. ACS Energy Letters, 2018, 3, 1795-1800.	8.8	321
42	Terawatt-scale photovoltaics: Transform global energy. Science, 2019, 364, 836-838.	6.0	320
43	Hot Hole Collection and Photoelectrochemical CO ₂ Reduction with Plasmonic Au/p-GaN Photocathodes. Nano Letters, 2018, 18, 2545-2550.	4.5	307
44	Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Letters, 2012, 12, 214-218.	4.5	298
45	Interband Transitions inSnxGe1â^'xAlloys. Physical Review Letters, 1997, 79, 1937-1940.	2.9	296
46	Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures. Nano Letters, 2014, 14, 3876-3880.	4.5	296
47	Growth of vertically aligned Si wire arrays over large areas (>1cm2) with Au and Cu catalysts. Applied Physics Letters, 2007, 91, .	1.5	274
48	Coupling electrochemical CO2 conversion with CO2 capture. Nature Catalysis, 2021, 4, 952-958.	16.1	272
49	Nanoscale Conducting Oxide PlasMOStor. Nano Letters, 2014, 14, 6463-6468.	4.5	267
50	Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene–Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Letters, 2017, 17, 3027-3034.	4.5	267
51	Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides. Nano Letters, 2006, 6, 1928-1932.	4.5	265
52	A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem Ill–V light absorbers protected by amorphous TiO ₂ films. Energy and Environmental Science, 2015, 8, 3166-3172.	15.6	263
53	Highly efficient GaAs solar cells by limiting light emission angle. Light: Science and Applications, 2013, 2, e45-e45.	7.7	260
54	Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 2009, 95, .	1.5	257

#	Article	IF	CITATIONS
55	Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook. ACS Photonics, 2017, 4, 2962-2970.	3.2	241
56	High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells. Journal of the American Chemical Society, 2007, 129, 12346-12347.	6.6	240
57	A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Materials, 2010, 9, 407-412.	13.3	238
58	Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics, 2016, 5, 96-111.	2.9	237
59	Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling. Nano Letters, 2012, 12, 2894-2900.	4.5	224
60	Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters. Nano Letters, 2005, 5, 1768-1773.	4.5	222
61	Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Applied Physics Letters, 1998, 72, 2577-2579.	1.5	220
62	Efficiency limits for photoelectrochemical water-splitting. Nature Communications, 2016, 7, 13706.	5.8	218
63	Si microwire-array solar cells. Energy and Environmental Science, 2010, 3, 1037.	15.6	217
64	Electronic modulation of infrared radiation in graphene plasmonic resonators. Nature Communications, 2015, 6, 7032.	5.8	213
65	Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers. Nano Letters, 2008, 8, 4048-4052.	4.5	212
66	Photovoltaic Performance of Ultrasmall PbSe Quantum Dots. ACS Nano, 2011, 5, 8140-8147.	7.3	210
67	Plasmoelectric potentials in metal nanostructures. Science, 2014, 346, 828-831.	6.0	209
68	The role of quantumâ€confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals. Applied Physics Letters, 1996, 68, 2511-2513.	1.5	205
69	Modeling Light Trapping in Nanostructured Solar Cells. ACS Nano, 2011, 5, 10055-10064.	7.3	205
70	Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence. Nano Letters, 2006, 6, 2622-2625.	4.5	201
71	Size-dependent electron-hole exchange interaction in Si nanocrystals. Applied Physics Letters, 2000, 76, 351-353.	1.5	199
72	Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing. ACS Nano, 2011, 5, 8167-8174.	7.3	198

#	Article	IF	CITATIONS
73	Electro-optically Tunable Multifunctional Metasurfaces. ACS Nano, 2020, 14, 6912-6920.	7.3	198
74	Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express, 2010, 18, 11192.	1.7	197
75	Electronically Tunable Perfect Absorption in Graphene. Nano Letters, 2018, 18, 971-979.	4.5	197
76	High-performance Si microwire photovoltaics. Energy and Environmental Science, 2011, 4, 866.	15.6	196
77	High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures. ACS Nano, 2017, 11, 7230-7240.	7.3	193
78	Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. Nano Letters, 2018, 18, 2957-2963.	4.5	193
79	Spectral tuning of plasmon-enhanced silicon quantum dot luminescence. Applied Physics Letters, 2006, 88, 131109.	1.5	185
80	Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy and Environmental Science, 2012, 5, 9653.	15.6	182
81	Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. Nano Letters, 2019, 19, 3961-3968.	4.5	179
82	Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides. Nano Letters, 2010, 10, 4851-4857.	4.5	170
83	Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Applied Physics Letters, 2001, 79, 433-435.	1.5	161
84	Structural and Optoelectronic Characterization of RF Sputtered ZnSnN ₂ . Advanced Materials, 2013, 25, 2562-2566.	11.1	161
85	All-day fresh water harvesting by microstructured hydrogel membranes. Nature Communications, 2021, 12, 2797.	5.8	159
86	Color Imaging <i>via</i> Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor. ACS Nano, 2013, 7, 10038-10047.	7.3	157
87	Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nature Communications, 2019, 10, 3654.	5.8	157
88	Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics. Nano Letters, 2016, 16, 5482-5487.	4.5	156
89	Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Physical Review B, 2014, 90, .	1.1	155
90	Tunable Color Filters Based on Metalâ^'Insulatorâ^'Metal Resonators. Nano Letters, 2009, 9, 2579-2583.	4.5	154

#	Article	IF	CITATIONS
91	Photoelectrochemistry of core–shell tandem junction n–p ⁺ -Si/n-WO ₃ microwire array photoelectrodes. Energy and Environmental Science, 2014, 7, 779-790.	15.6	152
92	Two-plasmon quantum interference. Nature Photonics, 2014, 8, 317-320.	15.6	150
93	Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15356-15361.	3.3	150
94	Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nature Communications, 2018, 9, 3394.	5.8	147
95	Symmetry breaking and strong coupling in planar optical metamaterials. Optics Express, 2010, 18, 13407.	1.7	145
96	Flexible Polymerâ€Embedded Si Wire Arrays. Advanced Materials, 2009, 21, 325-328.	11.1	144
97	Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, 2020, 19, 1312-1318.	13.3	138
98	Silicon-Based Plasmonics for On-Chip Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 295-306.	1.9	136
99	Universal optical transmission features in periodic and quasiperiodic hole arrays. Optics Express, 2008, 16, 9222.	1.7	129
100	Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. Journal of Applied Physics, 2014, 115, .	1.1	126
101	<i>Ab initio</i>)phonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B, 2016, 94, .	1.1	124
102	Ionâ€bombardmentâ€enhanced grain growth in germanium, silicon, and gold thin films. Journal of Applied Physics, 1988, 64, 2337-2353.	1.1	123
103	A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes. Journal of Physical Chemistry C, 2008, 112, 6186-6193.	1.5	122
104	Improving Brush Polymer Infrared One-Dimensional Photonic Crystals via Linear Polymer Additives. Journal of the American Chemical Society, 2014, 136, 17374-17377.	6.6	118
105	CO ₂ Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination. ACS Energy Letters, 2020, 5, 470-476.	8.8	117
106	Experimental and <i>AbÂlnitio</i> Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Physical Review Letters, 2017, 118, 087401.	2.9	116
107	How much can guided modes enhance absorption in thin solar cells?. Optics Express, 2009, 17, 20975.	1.7	112
108	Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 255-260.	0.8	109

#	Article	IF	Citations
109	Direct-bonded GaAsâ^•InGaAs tandem solar cell. Applied Physics Letters, 2006, 89, 102106.	1.5	108
110	Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting. Physical Review Letters, 2011, 107, 207401.	2.9	108
111	Materials challenges for the Starshot lightsail. Nature Materials, 2018, 17, 861-867.	13.3	107
112	Ultraclean Two-Stage Aerosol Reactor for Production of Oxide-Passivated Silicon Nanoparticles for Novel Memory Devices. Journal of the Electrochemical Society, 2001, 148, G265.	1.3	106
113	Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Applied Physics Letters, 2001, 78, 16-18.	1.5	103
114	Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy and Environmental Science, 2013, 6, 1879.	15.6	102
115	Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits. Physical Review B, 2008, 77, .	1.1	101
116	Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes. Journal of Applied Physics, 2014, 116 , .	1.1	100
117	Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots:  Simulation and Experiment. Journal of Physical Chemistry C, 2007, 111, 13372-13377.	1.5	97
118	Empirical interatomic potential for Si-H interactions. Physical Review B, 1995, 51, 4889-4893.	1.1	96
119	Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries. Optics Express, 2008, 16, 19001.	1.7	95
120	Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nature Communications, 2016, 7, 12323.	5.8	95
121	Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. Optics Express, 2014, 22, A930.	1.7	94
122	Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metalâ^'Insulatorâ^'Metal Waveguides. Nano Letters, 2008, 8, 2925-2929.	4.5	93
123	Electrically pumped hybrid evanescent Si/InGaAsP lasers. Optics Letters, 2009, 34, 1345.	1.7	93
124	Plasmon Dispersion in Coaxial Waveguides from Single-Cavity Optical Transmission Measurements. Nano Letters, 2009, 9, 2832-2837.	4.5	93
125	Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Applied Physics Letters, 2010, 96, .	1.5	93
126	Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency & mp;gt;50%. Applied Physics Letters, 2013, 102, .	1.5	91

#	Article	IF	CITATIONS
127	A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nature Communications, 2020, 11, 4412.	5.8	91
128	Field Effect Optoelectronic Modulation of Quantum-Confined Carriers in Black Phosphorus. Nano Letters, 2017, 17, 78-84.	4.5	89
129	Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nature Photonics, 2019, 13, 289-295.	15.6	89
130	820 mV open-circuit voltages from Cu2O/CH3CN junctions. Energy and Environmental Science, 2011, 4, 1311.	15.6	87
131	Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu ₂ O heterojunction solar cells. Energy and Environmental Science, 2014, 7, 3606-3610.	15.6	87
132	Probing the Band Structure of Topological Silicon Photonic Lattices in the Visible Spectrum. Physical Review Letters, 2019, 122, 117401.	2.9	87
133	Synthesis of epitaxial SnxGe1â^x alloy films by ionâ€assisted molecular beam epitaxy. Applied Physics Letters, 1996, 68, 664-666.	1.5	85
134	Secondary Ion Mass Spectrometry of Vaporâ^'Liquidâ^'Solid Grown, Au-Catalyzed, Si Wires. Nano Letters, 2008, 8, 3109-3113.	4.5	85
135	Flexible, Polymerâ€Supported, Si Wire Array Photoelectrodes. Advanced Materials, 2010, 22, 3277-3281.	11.1	85
136	Functional Plasmonic Nanocircuits with Low Insertion and Propagation Losses. Nano Letters, 2013, 13, 4539-4545.	4.5	85
137	Silicon Microwire Arrays for Solar Energy-Conversion Applications. Journal of Physical Chemistry C, 2014, 118, 747-759.	1.5	85
138	Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers. Applied Physics Letters, 2006, 89, 191124.	1.5	84
139	10 â€, μ m minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth. Applied Physics Letters, 2009, 95, .	1.5	84
140	Gallium Arsenide Solar Cell Absorption Enhancement Using Whispering Gallery Modes of Dielectric Nanospheres. IEEE Journal of Photovoltaics, 2012, 2, 123-128.	1.5	84
141	Broadband enhancement of light emission in silicon slot waveguides. Optics Express, 2009, 17, 7479.	1.7	83
142	The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study. IEEE Journal of Photovoltaics, 2017, 7, 1611-1618.	1.5	83
143	Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide. Nanophotonics, 2019, 8, 415-427.	2.9	83
144	Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO ₂ Reduction in Aqueous Electrolytes. Nano Letters, 2020, 20, 2348-2358.	4.5	82

#	Article	IF	CITATIONS
145	Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays. ACS Photonics, 2016, 3, 1826-1832.	3.2	81
146	Resonant thermoelectric nanophotonics. Nature Nanotechnology, 2017, 12, 770-775.	15.6	81
147	Materials issues for layered tunnel barrier structures. Journal of Applied Physics, 2002, 92, 261-267.	1.1	80
148	The New "p–n Junction― Plasmonics Enables Photonic Access to the Nanoworld. MRS Bulletin, 2005, 30, 385-389.	1.7	80
149	Electrochemical Tuning of the Dielectric Function of Au Nanoparticles. ACS Photonics, 2015, 2, 459-464.	3.2	80
150	The promise of plasmonics. Scientific American, 2007, 296, 56-63.	1.0	80
151	Tunable Visible and Near-IR Emission from Sub-10 nm Etched Single-Crystal Si Nanopillars. Nano Letters, 2010, 10, 4423-4428.	4.5	78
152	Bandgap Tunability in Zn(Sn,Ge)N ₂ Semiconductor Alloys. Advanced Materials, 2014, 26, 1235-1241.	11.1	75
153	A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Science Advances, 2019, 5, eaax6061.	4.7	74
154	Measurement of the direct energy gap of coherently strained SnxGelâ^'x/Ge(001) heterostructures. Applied Physics Letters, 2000, 77, 3418-3420.	1.5	73
155	Electroluminescence and photoluminescence of Geâ€implanted Si/SiO2/Si structures. Applied Physics Letters, 1995, 66, 745-747.	1.5	72
156	Conjugated Polymer/Metal Nanowire Heterostructure Plasmonic Antennas. Advanced Materials, 2010, 22, 1223-1227.	11.1	72
157	Graphene field effect transistor without an energy gap. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8786-8789.	3.3	72
158	Giant Enhancement of Photoluminescence Emission in WS ₂ -Two-Dimensional Perovskite Heterostructures. Nano Letters, 2019, 19, 4852-4860.	4.5	72
159	Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single $Si(111)$ substrate. Applied Physics Letters, 2008, 93, .	1.5	71
160	High efficiency InGaAs solar cells on Si by InP layer transfer. Applied Physics Letters, 2007, 91, 012108.	1.5	70
161	Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2. Applied Physics Letters, 2009, 95, .	1.5	70
162	Active Radiative Thermal Switching with Graphene Plasmon Resonators. ACS Nano, 2018, 12, 2474-2481.	7.3	70

#	Article	IF	Citations
163	Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells. Energy and Environmental Science, 2014, 7, 1907-1912.	15.6	69
164	Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion. ACS Energy Letters, 2020, 5, 940-945.	8.8	68
165	Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass. Applied Physics Letters, 2003, 83, 4137-4139.	1.5	67
166	Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence. Nano Letters, 2007, 7, 3612-3617.	4.5	67
167	Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bulletin, 2012, 37, 717-724.	1.7	67
168	InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation. Applied Physics Letters, 2003, 83, 5413-5415.	1.5	66
169	Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance. Advanced Materials, 2017, 29, 1701044.	11.1	66
170	Macroporous Silicon as a Model for Silicon Wire Array Solar Cells. Journal of Physical Chemistry C, 2008, 112, 6194-6201.	1.5	65
171	Rapid biaxial texture development during nucleation of MgO thin films during ion beam-assisted deposition. Applied Physics Letters, 2002, 80, 3388-3390.	1.5	64
172	Very low temperature (<400 °C) silicon molecular beam epitaxy: The role of low energy ion irradiation. Applied Physics Letters, 1993, 62, 2566-2568.	1.5	63
173	GalnPâ^•GaAs dual junction solar cells on Geâ^•Si epitaxial templates. Applied Physics Letters, 2008, 92, 103503.	1.5	63
174	Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy and Environmental Science, 2014, 7, 3424-3430.	15.6	63
175	Optical magnetism in planar metamaterial heterostructures. Nature Communications, 2018, 9, 296.	5.8	63
176	Localized charge injection in SiO2 films containing silicon nanocrystals. Applied Physics Letters, 2001, 79, 791-793.	1.5	61
177	Highly Strain-Tunable Interlayer Excitons in MoS ₂ /WSe ₂ Heterobilayers. Nano Letters, 2021, 21, 3956-3964.	4.5	60
178	Probing the size and density of silicon nanocrystals in nanocrystal memory device applications. Applied Physics Letters, 2005, 86, 033103.	1.5	58
179	Effectively Transparent Front Contacts for Optoelectronic Devices. Advanced Optical Materials, 2016, 4, 1470-1474.	3.6	58
180	Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs. Science Advances, 2022, 8, eabm4308.	4.7	58

#	Article	IF	CITATIONS
181	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	1.3	58
182	Size classification of silicon nanocrystals. Applied Physics Letters, 1996, 68, 3162-3164.	1.5	57
183	Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science, 2021, 374, 448-453.	6.0	57
184	Resonant Guided Wave Networks. Physical Review Letters, 2010, 104, 147402.	2.9	56
185	Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure. Nature Communications, 2017, 8, 1631.	5.8	56
186	Hyper-selective plasmonic color filters. Optics Express, 2017, 25, 27386.	1.7	56
187	A flexible phased array system with low areal mass density. Nature Electronics, 2019, 2, 195-205.	13.1	56
188	Ion irradiation enhanced crystal nucleation in amorphous Si thin films. Applied Physics Letters, 1990, 57, 1766-1768.	1.5	55
189	Plasmonics: optics at the nanoscale. Materials Today, 2005, 8, 56.	8.3	55
190	Nanoporous Gold as a Highly Selective and Active Carbon Dioxide Reduction Catalyst. ACS Applied Energy Materials, 2019, 2, 164-170.	2.5	55
191	High Spectral Resolution Plasmonic Color Filters with Subwavelength Dimensions. ACS Photonics, 2019, 6, 332-338.	3.2	54
192	Absolute and arbitrary orientation of single-molecule shapes. Science, 2021, 371, .	6.0	54
193	Hot-Hole <i>versus</i> Hot-Electron Transport at Cu/GaN Heterojunction Interfaces. ACS Nano, 2020, 14, 5788-5797.	7.3	53
194	Interface-Limited Grain-Boundary Motion during Ion Bombardment. Physical Review Letters, 1988, 60, 112-115.	2.9	52
195	Study of orientation effect on nanoscale polarization in BaTiO3 thin films using piezoresponse force microscopy. Applied Physics Letters, 2005, 86, 192907.	1.5	52
196	pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen ^{2+/+} Contacts Through Use of Radial n ⁺ p-Si Junction Microwire Array Photoelectrodes. Journal of Physical Chemistry C, 2011, 115, 594-598.	1.5	52
197	Nanometerâ€scale GaAs clusters from organometallic precursors. Applied Physics Letters, 1992, 61, 696-698.	1.5	51
198	Quantum optical properties of a dipole emitter coupled to an É-near-zero nanoscale waveguide. Optics Express, 2013, 21, 32279.	1.7	51

#	Article	IF	Citations
199	Defect generation and morphology of (001) Si surfaces during low-energy Ar-ion bombardment. Physical Review B, 1992, 45, 1507-1510.	1.1	50
200	Nanophotonic Heterostructures for Efficient Propulsion and Radiative Cooling of Relativistic Light Sails. Nano Letters, 2018, 18, 5583-5589.	4.5	50
201	Array-Level Inverse Design of Beam Steering Active Metasurfaces. ACS Nano, 2020, 14, 15042-15055.	7.3	50
202	Quenching of Si nanocrystal photoluminescence by doping with gold or phosphorous. Journal of Luminescence, 2005, 114, 137-144.	1.5	49
203	GaAs Passivation with Trioctylphosphine Sulfide for Enhanced Solar Cell Efficiency and Durability. Advanced Energy Materials, 2012, 2, 339-344.	10.2	49
204	Three-Dimensional Single Gyroid Photonic Crystals with a Mid-Infrared Bandgap. ACS Photonics, 2016, 3, 1131-1137.	3.2	49
205	Impact of Semiconductor Band Tails and Band Filling on Photovoltaic Efficiency Limits. ACS Energy Letters, 2021, 6, 52-57.	8.8	49
206	Unassisted Highly Selective Gas-Phase CO ₂ Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H ₂ O as an Electron Donor. ACS Energy Letters, 2021, 6, 1849-1856.	8.8	49
207	Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit. Optics Express, 2011, 19, 3316.	1.7	47
208	Grain boundary mediated amorphization in silicon during ion irradiation. Applied Physics Letters, 1990, 56, 30-32.	1.5	46
209	Direct energy gap group IV semiconductor alloys and quantum dot arrays in SnxGe1â^'x/Ge and SnxSi1â^'x/Si alloy systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87, 204-213.	1.7	46
210	Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks. Nano Letters, 2014, 14, 3284-3292.	4.5	45
211	Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect. Nano Letters, 2014, 14, 4280-4285.	4.5	45
212	Hydrogen from Sunlight and Water: A Side-by-Side Comparison between Photoelectrochemical and Solar Thermochemical Water-Splitting. ACS Energy Letters, 2021, 6, 3096-3113.	8.8	45
213	Monte Carlo simulations of epitaxial growth: comparison of pulsed laser deposition and molecular beam epitaxy. Applied Surface Science, 1998, 127-129, 159-163.	3.1	43
214	Photoluminescence from GaAs nanocrystals fabricated by Ga+ and As+ co-implantation into SiO2 matrices. Applied Physics Letters, 1998, 73, 1829-1831.	1.5	43
215	Ultrathin pseudomorphic Sn/Si and SnxSi1â^'x/Si heterostructures. Applied Physics Letters, 1998, 72, 1884-1886.	1.5	42
216	Optically triggered Q-switched photonic crystal laser. Optics Express, 2005, 13, 4699.	1.7	42

#	Article	IF	CITATIONS
217	Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles. Journal of the Electrochemical Society, 2010, 157, B1290.	1.3	42
218	Photolithographic Olefin Metathesis Polymerization. Journal of the American Chemical Society, 2013, 135, 16817-16820.	6.6	42
219	Synthesis of luminescent silicon clusters by spark ablation. Applied Physics Letters, 1993, 63, 1549-1551.	1.5	41
220	The aging of tungsten filaments and its effect on wire surface kinetics in hot-wire chemical vapor deposition. Journal of Applied Physics, 2002, 92, 4803-4808.	1.1	41
221	Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources. Physical Review B, 2004, 69, .	1.1	41
222	Plasmonics for improved photovoltaic devices., 2010,, 1-11.		41
223	Field-effect induced tunability in hyperbolic metamaterials. Physical Review B, 2015, 92, .	1.1	41
224	Visible light emission from GaAs nanocrystals inSiO2films fabricated by sequential ion implantation. Physical Review B, 2000, 62, 5100-5108.	1.1	40
225	Enhancing the Radiative Rate in Illâ''V Semiconductor Plasmonic Coreâ'Shell Nanowire Resonators. Nano Letters, 2011, 11, 372-376.	4.5	40
226	Limits to the Optical Response of Graphene and Two-Dimensional Materials. Nano Letters, 2017, 17, 5408-5415.	4. 5	40
227	Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus. Nano Letters, 2019, 19, 269-276.	4.5	40
228	Tunable intraband optical conductivity and polarization-dependent epsilon-near-zero behavior in black phosphorus. Science Advances, 2021, 7, .	4.7	40
229	Vapor phase synthesis of crystalline nanometerâ€scale GaAs clusters. Applied Physics Letters, 1992, 60, 950-952.	1.5	39
230	Hot-wire chemical vapor deposition of high hydrogen content silicon nitride for solar cell passivation and anti-reflection coating applications. Thin Solid Films, 2003, 430, 37-40.	0.8	39
231	Photoelectrochemical Behavior of Planar and Microwireâ€Array Si GaP Electrodes. Advanced Energy Materials, 2012, 2, 1109-1116.	10.2	39
232	Nearly 90% Circularly Polarized Emission in Monolayer WS ₂ Single Crystals by Chemical Vapor Deposition. ACS Nano, 2020, 14, 1350-1359.	7.3	39
233	Ge layer transfer to Si for photovoltaic applications. Thin Solid Films, 2002, 403-404, 558-562.	0.8	38
234	Role of hydrogen in hydrogen-induced layer exfoliation of germanium. Physical Review B, 2007, 75, .	1.1	38

#	Article	IF	CITATIONS
235	Light trapping beyond the 4 <i>n</i> 2 limit in thin waveguides. Applied Physics Letters, 2012, 100, .	1.5	38
236	Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces. Scientific Reports, 2016, 6, 31451.	1.6	38
237	Nearâ€Infrared Active Metasurface for Dynamic Polarization Conversion. Advanced Optical Materials, 2021, 9, 2100230.	3.6	38
238	Silicon Nanocrystal Field-Effect Light-Emitting Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1647-1656.	1.9	37
239	Negative refractive index in coaxial plasmon waveguides. Optics Express, 2010, 18, 12770.	1.7	36
240	Atomic-Scale Structural and Chemical Characterization of Hexagonal Boron Nitride Layers Synthesized at the Wafer-Scale with Monolayer Thickness Control. Chemistry of Materials, 2017, 29, 4700-4707.	3.2	36
241	Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures. Nano Letters, 2019, 19, 3898-3904.	4.5	36
242	Island growth and coarsening in thin filmsâ€"conservative and nonconservative systems. Journal of Applied Physics, 1990, 67, 6202-6213.	1,1	35
243	Gas phase and surface kinetic processes in polycrystalline silicon hot-wire chemical vapor deposition. Thin Solid Films, 2001, 395, 29-35.	0.8	35
244	Epitaxial Growth of DNA-Assembled Nanoparticle Superlattices on Patterned Substrates. Nano Letters, 2013, 13, 6084-6090.	4.5	35
245	Epitaxy: Programmable Atom Equivalents <i>Versus</i> Atoms. ACS Nano, 2017, 11, 180-185.	7.3	35
246	Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators. IEEE Journal of Photovoltaics, 2018, 8, 1560-1567.	1.5	35
247	Energy transport in metal nanoparticle plasmon waveguides. Materials Research Society Symposia Proceedings, 2003, 777, 711.	0.1	34
248	Band alignment of epitaxial ZnS/Zn3P2 heterojunctions. Journal of Applied Physics, 2012, 112, .	1.1	34
249	Silicon heterojunction solar cells with effectively transparent front contacts. Sustainable Energy and Fuels, 2017, 1, 593-598.	2.5	34
250	Activation-energy spectrum and structural relaxation dynamics of amorphous silicon. Physical Review B, 1993, 48, 5964-5972.	1.1	33
251	Reflection high-energy electron diffraction experimental analysis of polycrystalline MgO films with grain size and orientation distributions. Journal of Applied Physics, 2003, 93, 205-210.	1.1	33
252	Improved electrical properties of wafer-bonded p-GaAs/n-InP interfaces with sulfide passivation. Journal of Applied Physics, 2008, 103, .	1.1	33

#	Article	IF	Citations
253	Epitaxial growth of Cu2O and ZnO/Cu2O thin films on MgO by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2011, 319, 39-43.	0.7	33
254	Retrieval of material parameters for uniaxial metamaterials. Physical Review B, 2015, 91, .	1.1	32
255	Wide-band-gap InAlAs solar cell for an alternative multijunction approach. Applied Physics Letters, 2011, 98, 093502.	1.5	31
256	DFT Study of Water Adsorption and Decomposition on a Ga-Rich GaP(001)($2\tilde{A}$ -4) Surface. Journal of Physical Chemistry C, 2012, 116, 17604-17612.	1.5	31
257	Path entanglement of surface plasmons. New Journal of Physics, 2015, 17, 023002.	1.2	31
258	Mesoscale trumps nanoscale: metallic mesoscale contact morphology for improved light trapping, optical absorption and grid conductance in silicon solar cells. Optics Express, 2018, 26, A275.	1.7	31
259	The Promise of PLASMONICS. Scientific American Reports, 2007, 17, 56-63.	0.0	30
260	Imaging Water-Splitting Electrocatalysts with pH-Sensing Confocal Fluorescence Microscopy. Journal of the Electrochemical Society, 2012, 159, H752-H757.	1.3	30
261	Transport of hot carriers in plasmonic nanostructures. Physical Review Materials, 2019, 3, .	0.9	30
262	Photoanodic behavior of vapor-liquid-solid–grown, lightly doped, crystalline Si microwire arrays. Energy and Environmental Science, 2012, 5, 6867.	15.6	29
263	Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes. Nature Communications, 2019, 10, 2106.	5.8	29
264	Thermodynamic theory of the plasmoelectric effect. Scientific Reports, 2016, 6, 23283.	1.6	28
265	Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu ₂ 0. ACS Energy Letters, 2017, 2, 431-437.	8.8	28
266	Comparative Technoeconomic Analysis of Renewable Generation of Methane Using Sunlight, Water, and Carbon Dioxide. ACS Energy Letters, 0, , 1540-1549.	8.8	28
267	Mid-infrared radiative emission from bright hot plasmons in graphene. Nature Materials, 2021, 20, 805-811.	13.3	28
268	A Scalable Turbulent Mixing Aerosol Reactor for Oxide-Coated Silicon Nanoparticles. Industrial & Engineering Chemistry Research, 2005, 44, 6332-6341.	1.8	27
269	The effect of biaxial texture on the effective electromechanical constants of polycrystalline barium titanate and lead titanate thin films. Acta Materialia, 2006, 54, 3657-3663.	3.8	27
270	Porous Nanomaterials for Ultrabroadband Omnidirectional Antiâ∈Reflection Surfaces with Applications in High Concentration Photovoltaics. Advanced Energy Materials, 2017, 7, 1601992.	10.2	27

#	Article	IF	CITATIONS
271	Gate-Variable Mid-Infrared Optical Transitions in a (Bi _{1â€"<i>x</i>} Sb _{<i>x</i>}) ₂ Te ₃ Topological Insulator. Nano Letters, 2017, 17, 255-260.	4.5	27
272	Radiation Tolerant Nanowire Array Solar Cells. ACS Nano, 2019, 13, 12860-12869.	7.3	27
273	Microstructure and properties of single crystal BaTiO3 thin films synthesized by ion implantation-induced layer transfer. Applied Physics Letters, 2004, 85, 455-457.	1.5	26
274	Spectroscopic studies of the mechanism for hydrogen-induced exfoliation of InP. Physical Review B, 2005, 72, .	1.1	26
275	Polycrystalline Cu2O photovoltaic devices incorporating Zn(O,S) window layers. Solar Energy Materials and Solar Cells, 2017, 160, 340-345.	3.0	26
276	Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics, 2020, 7, 2122-2131.	3.2	26
277	Upconversion Plasmonic Lasing from an Organolead Trihalide Perovskite Nanocrystal with Low Threshold. ACS Photonics, 2021, 8, 335-342.	3.2	26
278	Mechanisms for crystallographic orientation in the crystallization of thin silicon films from the melt. Journal of Materials Research, 1988, 3, 1232-1237.	1.2	25
279	Crystal-state–amorphous-state transition in low-temperature silicon homoepitaxy. Physical Review B, 1994, 49, 8483-8486.	1.1	25
280	Pseudomorphic growth and strain relaxation of \hat{l} ±-Zn3P2 on GaAs(001) by molecular beam epitaxy. Journal of Crystal Growth, 2013, 363, 205-210.	0.7	25
281	Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers. Optics Express, 2013, 21, 30315.	1.7	25
282	Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19707-19712.	3.3	25
283	Si/TiO ₂ Tandem-Junction Microwire Arrays for Unassisted Solar-Driven Water Splitting. Journal of the Electrochemical Society, 2016, 163, H261-H264.	1.3	25
284	<i>Operando</i> Local pH Measurement within Gas Diffusion Electrodes Performing Electrochemical Carbon Dioxide Reduction. Journal of Physical Chemistry C, 2021, 125, 20896-20904.	1.5	25
285	Energy-band alignment of II-VI/Zn3P2 heterojunctions from x-ray photoemission spectroscopy. Journal of Applied Physics, 2013, 113, .	1.1	24
286	Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering. Scientific Reports, 2016, 6, 23232.	1.6	24
287	Enhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered Microwire Arrays. ACS Photonics, 2016, 3, 1854-1861.	3.2	24
288	Electrically Tunable and Dramatically Enhanced Valleyâ€Polarized Emission of Monolayer WS ₂ at Room Temperature with Plasmonic Archimedes Spiral Nanostructures. Advanced Materials, 2022, 34, e2104863.	11.1	24

#	Article	IF	Citations
289	Nonlithographic epitaxial SnxGe1â^'x dense nanowire arrays grown on Ge(001). Applied Physics Letters, 2003, 82, 3439-3441.	1.5	23
290	Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells. IEEE Journal of Photovoltaics, 2015, 5, 61-69.	1.5	23
291	Cation-Mutation Design of Quaternary Nitride Semiconductors Lattice-Matched to GaN. Chemistry of Materials, 2015, 27, 7757-7764.	3.2	23
292	Aluminum Oxide Nanoparticle Films Deposited from a Nonthermal Plasma: Synthesis, Characterization, and Crystallization. ACS Omega, 2020, 5, 24754-24761.	1.6	23
293	Kinetic and thermodynamic enhancement of crystal nucleation and growth rates in amorphous Si film during ion irradiation. Nuclear Instruments & Methods in Physics Research B, 1991, 59-60, 422-426.	0.6	22
294	Metal nanoparticle arrays for near-field optical lithography. , 2002, 4810, 7.		22
295	Size tunable visible and near-infrared photoluminescence from vertically etched silicon quantum dots. Applied Physics Letters, 2011, 98, 153114.	1.5	22
296	Nanoscale doping heterogeneity in few-layer WSe ₂ exfoliated onto noble metals revealed by correlated SPM and TERS imaging. 2D Materials, 2018, 5, 035003.	2.0	22
297	Metal–Polymer–Metal Splitâ€Dipole Nanoantennas. Advanced Materials, 2012, 24, OP136-42.	11.1	21
298	Quantum nonlinear light emission in metamaterials: broadband Purcell enhancement of parametric downconversion. Optica, 2018, 5, 608.	4.8	21
299	Temperature-dependent Spectral Emission of Hexagonal Boron Nitride Quantum Emitters on Conductive and Dielectric Substrates. Physical Review Applied, 2021, 15, .	1.5	21
300	In situ analysis of irradiation-induced crystal nucleation in amorphous silicon: a "microscope―for thermodynamic processes in nucleation. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 973-977.	0.6	20
301	Solid phase epitaxy of diamond cubic SnxGe1â^'xalloys. Journal of Applied Physics, 1996, 80, 4384-4388.	1.1	20
302	Silver diffusion bonding and layer transfer of lithium niobate to silicon. Applied Physics Letters, 2008, 93, 092906.	1.5	20
303	Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation. Journal of Applied Physics, 2010, 108, 063109.	1.1	20
304	Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass. Scientific Reports, 2017, 7, 4643.	1.6	20
305	Probing the Catalytically Active Region in a Nanoporous Gold Gas Diffusion Electrode for Highly Selective Carbon Dioxide Reduction. ACS Energy Letters, 2022, 7, 871-879.	8.8	20
306	Reflection electron energy loss spectroscopy during initial stages of Ge growth on Si by molecular beam epitaxy. Applied Physics Letters, 1991, 58, 269-271.	1.5	19

#	Article	IF	Citations
307	The role of particle energy and pulsed particle flux in physical vapor deposition and pulsed–laser deposition. Applied Physics Letters, 1999, 75, 4091-4093.	1.5	19
308	Design of a film surface roughness-minimizing molecular beam epitaxy process by reduced-order modeling of epitaxial growth. Journal of Applied Physics, 2004, 95, 483-489.	1.1	19
309	Self-Optimizing Photoelectrochemical Growth of Nanopatterned Se–Te Films in Response to the Spectral Distribution of Incident Illumination. Nano Letters, 2015, 15, 7071-7076.	4.5	19
310	Solar power windows: Connecting scientific advances to market signals. Energy, 2021, 219, 119567.	4.5	19
311	Models for quantitative charge imaging by atomic force microscopy. Journal of Applied Physics, 2001, 90, 2764-2772.	1.1	18
312	Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 599-604.	1.5	18
313	Multijunction solar cell efficiencies: effect of spectral window, optical environment and radiative coupling. Energy and Environmental Science, 2014, 7, 3600-3605.	15.6	18
314	Effects of Electron and Proton Radiation on Perovskite Solar Cells for Space Solar Power Application., 2017,,.		18
315	Analysis of monolayer films during molecular beam epitaxy by reflection electron energy loss spectroscopy. Surface Science, 1993, 298, 273-283.	0.8	17
316	Synthesis of dislocation free Siy(SnxC1â^'x)1â^'yalloys by molecular beam deposition and solid phase epitaxy. Applied Physics Letters, 1994, 65, 1159-1161.	1.5	17
317	Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide. Applied Physics Letters, 1996, 68, 3392-3394.	1.5	17
318	A near-infrared photoluminescence study of GaAs nanocrystals in SiO2 films formed by sequential ion implantation. Journal of Applied Physics, 1999, 86, 1762-1764.	1.1	17
319	Determination of energy barrier profiles for high-k dielectric materials utilizing bias-dependent internal photoemission. Applied Physics Letters, 2004, 85, 4133-4135.	1.5	17
320	Growth and optical property characterization of textured barium titanate thin films for photonic applications. Journal of Crystal Growth, 2007, 300, 330-335.	0.7	17
321	Time dependent behavior of a localized electron at a heterojunction boundary of graphene. Applied Physics Letters, 2010, 97, 043504.	1.5	17
322	Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems. Journal of Physical Chemistry C, 2016, 120, 21056-21062.	1.5	17
323	Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se–Te Films. ACS Nano, 2016, 10, 102-111.	7.3	17
324	Effects of surface condition on the work function and valence-band position of ZnSnN2. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	17

#	Article	IF	Citations
325	Electromagnetic energy transport along Yagi arrays. Materials Science and Engineering C, 2002, 19, 291-294.	3.8	16
326	Characterization of the tunable response of highly strained compliant optical metamaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3447-3455.	1.6	16
327	Passivation of Zn3P2 substrates by aqueous chemical etching and air oxidation. Journal of Applied Physics, 2012, 112, 106101.	1.1	16
328	Semiconducting ZnSnxGe1â^xN2 alloys prepared by reactive radio-frequency sputtering. APL Materials, 2015, 3, 076104.	2,2	16
329	Morphological Expression of the Coherence and Relative Phase of Optical Inputs to the Photoelectrodeposition of Nanopatterned Se–Te Films. Nano Letters, 2016, 16, 2963-2968.	4.5	16
330	An ultralight concentrator photovoltaic system for space solar power harvesting. Acta Astronautica, 2020, 170, 443-451.	1.7	16
331	Refractive Index Modulation in Monolayer Molybdenum Diselenide. Nano Letters, 2021, 21, 7602-7608.	4.5	16
332	Quantitative analysis of semiconductor alloy composition during growth by reflection-electron energy loss spectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 762.	1.6	15
333	Space-charge effects in nanoparticle processing using the differential mobility analyzer. Journal of Aerosol Science, 2001, 32, 583-599.	1.8	15
334	Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit. , 2002, , .		15
335	Wafer-Scale Growth of Silicon Microwire Arrays for Photovoltaics and Solar Fuel Generation. IEEE Journal of Photovoltaics, 2012, 2, 294-297.	1.5	15
336	Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition. Nano Letters, 2016, 16, 5015-5021.	4.5	15
337	Spectrally Matched Quantum Dot Photoluminescence in GaAs-Si Tandem Luminescent Solar Concentrators. IEEE Journal of Photovoltaics, 2019, 9, 397-401.	1.5	15
338	Nanowire Solar Cells: A New Radiation Hard PV Technology for Space Applications. IEEE Journal of Photovoltaics, 2020, 10, 502-507.	1.5	15
339	X-ray Photoelectron Spectroscopy and Resonant X-ray Spectroscopy Investigations of Interactions between Thin Metal Catalyst Films and Amorphous Titanium Dioxide Photoelectrode Protection Layers. Chemistry of Materials, 2021, 33, 1265-1275.	3.2	15
340	Plasmon Printing – a New Approach to Near-Field Lithography. Materials Research Society Symposia Proceedings, 2001, 705, 361.	0.1	14
341	Hot-wire CVD-grown epitaxial Si films on Si (100) substrates and a model of epitaxial breakdown. Thin Solid Films, 2006, 501, 332-334.	0.8	14
342	Conformal GaP layers on Si wire arrays for solar energy applications. Applied Physics Letters, 2010, 97,	1.5	14

#	Article	IF	CITATIONS
343	Programming of inhomogeneous resonant guided wave networks. Optics Express, 2010, 18, 25584.	1.7	14
344	Waferâ€Scale Strain Engineering of Ultrathin Semiconductor Crystalline Layers. Advanced Materials, 2011, 23, 3801-3807.	11.1	14
345	Template-Free Synthesis of Periodic Three-Dimensional PbSe Nanostructures via Photoelectrodeposition. Journal of the American Chemical Society, 2018, 140, 6536-6539.	6.6	14
346	Study of the Interface in a GaP/Si Heterojunction Solar Cell. IEEE Journal of Photovoltaics, 2018, 8, 1568-1576.	1.5	14
347	High Broadband Light Transmission for Solar Fuels Production Using Dielectric Optical Waveguides in TiO ₂ Nanocone Arrays. Nano Letters, 2020, 20, 502-508.	4.5	14
348	Silicon epitaxy on hydrogen-terminated Si(001) surfaces using thermal and energetic beams. Surface Science, 1997, 374, 283-290.	0.8	13
349	Large-grained polycrystalline Si films obtained by selective nucleation and solid phase epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 212-217.	1.7	13
350	Surface evolution during crystalline silicon film growth by low-temperature hot-wire chemical vapor deposition on silicon substrates. Physical Review B, 2006, 73, .	1.1	13
351	Wafer-bonded single-crystal silicon slot waveguides and ring resonators. Applied Physics Letters, 2009, 94, .	1.5	13
352	Suppression of surface recombination in CulnSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation. Acta Materialia, 2016, 106, 171-181.	3.8	13
353	Modulated Resonant Transmission of Graphene Plasmons Across a $\langle i \rangle \hat{l} \times \langle i \rangle$ /50 Plasmonic Waveguide Gap. Physical Review Applied, 2018, 10, .	1.5	13
354	Enhancing the Power Output of Bifacial Solar Modules by Applying Effectively Transparent Contacts (ETCs) With Light Trapping. IEEE Journal of Photovoltaics, 2018, 8, 1183-1189.	1.5	13
355	Extremely broadband ultralight thermally-emissive optical coatings. Optics Express, 2018, 26, 18545.	1.7	13
356	The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh () Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf 5
357	Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells. ACS Applied Energy Materials, 2020, 3, 1540-1551.	2.5	13
358	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	4.0	13
359	Outdoor performance of a tandem InGaP/Si photovoltaic luminescent solar concentrator. Solar Energy Materials and Solar Cells, 2021, 223, 110945.	3.0	13
360	Growth of biaxially textured BaxPb1â^'xTiO3 ferroelectric thin films on amorphous Si3N4. Journal of Applied Physics, 2005, 97, 034103.	1.1	12

#	Article	IF	CITATIONS
361	Reflection hologram solar spectrum-splitting filters. , 2012, , .		12
362	Spectrum-splitting photovoltaics: Holographic spectrum splitting in eight-junction, ultra-high efficiency module. , 2013 , , .		12
363	Single phase, single orientation Cu2O (1 0 0) and (1 1 0) thin films grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2015, 410, 77-81.	0.7	12
364	Effectively transparent contacts (ETCs) for solar cells. , 2016, , .		12
365	Conformal SnO _x heterojunction coatings for stabilized photoelectrochemical water oxidation using arrays of silicon microcones. Journal of Materials Chemistry A, 2020, 8, 9292-9301.	5.2	12
366	Mimicking surface polaritons for unpolarized light with high-permittivity materials. Physical Review Materials, $2019,3,.$	0.9	12
367	Fabrication of semiconductor quantum dots. Journal of Aerosol Science, 1991, 22, S31-S33.	1.8	11
368	Nanomechanical characterization of cavity growth and rupture in hydrogen-implanted single-crystal BaTiO3. Journal of Applied Physics, 2005, 97, 074311.	1.1	11
369	Bending light to our will. MRS Bulletin, 2011, 36, 57-62.	1.7	11
370	Nanophotonic design principles for ultrahigh efficiency photovoltaics. AIP Conference Proceedings, 2013, , .	0.3	11
371	Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si WO_3 microwires. Optics Express, 2014, 22, A1453.	1.7	11
372	Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition. Applied Physics Letters, 2015, 106, .	1.5	11
373	Energy production advantage of independent subcell connection for multijunction photovoltaics. Energy Science and Engineering, 2016, 4, 235-244.	1.9	11
374	Solar research not finished. Nature Photonics, 2016, 10, 141-142.	15.6	11
375	Suppression of nucleation during crystallization of amorphous thin Si films. Applied Physics Letters, 1991, 59, 2314-2316.	1.5	10
376	Resonanceâ€enhanced spontaneous emission from quantum dots. Journal of Applied Physics, 1992, 72, 806-808.	1.1	10
377	InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2008, 310, 2514-2519.	0.7	10
378	Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array. , 2012, , .		10

#	Article	IF	CITATIONS
379	Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices. , 2012, , .		10
380	Flexible, Transparent Contacts for Inorganic Nanostructures and Thin Films. Advanced Materials, 2013, 25, 4018-4022.	11.1	10
381	Lower-dimensional quantum structures by selective growth and gas-phase nucleation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1993, 11, 1660.	1.6	9
382	Synthesis of epitaxial SnxGe1â^'x alloy films by ion-assisted molecular beam epitaxy. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 126-132.	0.6	9
383	<title>Electromagnetic energy transport below the diffraction limit in periodic metal nanostructures</title> ., 2001, , .		9
384	Nanoengineered silicon/silicon dioxide nanoparticle heterostructures. Solid State Sciences, 2005, 7, 882-890.	1.5	9
385	Kinetics governing phase separation of nanostructuredSnxGe1â^xalloys. Physical Review B, 2006, 73, .	1.1	9
386	Mg doping and alloying in Zn <inf>3</inf> P <inf>2</inf> heterojunction solar cells. , 2010, , .		9
387	Optoelectronic analysis of multijunction wire array solar cells. Journal of Applied Physics, 2013, 114, .	1.1	9
388	Spectrum splitting photovoltaics: Polyhedral specular reflector design for ultra-high efficiency modules. , $2013, \dots$		9
389	Design of photovoltaics for modules with 50% efficiency. Energy Science and Engineering, 2017, 5, 69-80.	1.9	9
390	Life Cycle Assessment of tandem LSC-Si devices. Energy, 2019, 181, 1-10.	4.5	9
391	Band Edge Tailoring in Few-Layer Two-Dimensional Molybdenum Sulfide/Selenide Alloys. Journal of Physical Chemistry C, 2020, 124, 22893-22902.	1.5	9
392	Perimeter-Control Architecture for Optical Phased Arrays and Metasurfaces. Physical Review Applied, 2020, 14, .	1.5	9
393	Si-Cluster Luminescence. Materials Research Society Symposia Proceedings, 1992, 283, 77.	0.1	8
394	Correlation of size and photoluminescence for Ge nanocrystals in SiO2 matrices. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 433-437.	0.6	8
395	Role of energetic flux in low temperature Si epitaxy on dihydride-terminated Si (001). Thin Solid Films, 1998, 324, 85-88.	0.8	8
396	Structural Transformations in self-assembled Semiconductor Quantum Dots as inferred by Transmission Electron Microscopy., 2002, 4807, 71.		8

#	Article	IF	Citations
397	Operation of lightly doped Si microwires under high-level injection conditions. Energy and Environmental Science, 2014, 7, 2329-2338.	15.6	8
398	Growth of Epitaxial ZnSnxGe1â°'xN2 Alloys by MBE. Scientific Reports, 2017, 7, 11990.	1.6	8
399	Inorganic Phototropism in Electrodeposition of Se–Te. Journal of the American Chemical Society, 2019, 141, 18658-18661.	6.6	8
400	Optically tunable mesoscale CdSe morphologies <i>via</i> inorganic phototropic growth. Journal of Materials Chemistry C, 2020, 8, 12412-12417.	2.7	8
401	Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40742-40753.	4.0	8
402	Dispersion Mapping in 3-Dimensional Core–Shell Photonic Crystal Lattices Capable of Negative Refraction in the Mid-Infrared. Nano Letters, 2021, 21, 9102-9107.	4.5	8
403	Point defect enhanced grain growth in silicon thin films: The role of ion bombardment and dopants. Applied Physics Letters, 1988, 53, 2155-2157.	1.5	7
404	Island Evolution During Early Stages of Ion-Assisted Film Growth: Ge ON SiO ₂ . Materials Research Society Symposia Proceedings, 1991, 223, 53.	0.1	7
405	Controlled Passivation and Luminescence Blue Shifts of Isolated Silicon Nanocrystals. Materials Research Society Symposia Proceedings, 2003, 770, 621.	0.1	7
406	Surface plasmons for nanofabrication. , 2004, , .		7
407	Paths to high efficiency low-cost photovoltaics. , 2011, , .		7
408	Spectrum splitting photovoltaics: Materials and device parameters to achieve ultrahigh system efficiency, , $2013, , .$		7
409	Scanning Laser-Beam-Induced Current Measurements of Lateral Transport Near-Junction Defects in Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 154-159.	1.5	7
410	Low-Intensity High-Temperature (LIHT) Solar Cells for Venus Atmosphere. IEEE Journal of Photovoltaics, 2018, 8, 1621-1626.	1.5	7
411	Simulation and partial prototyping of an eightâ€junction holographic spectrumâ€splitting photovoltaic module. Energy Science and Engineering, 2019, 7, 2572-2584.	1.9	7
412	Integration of electrocatalysts with silicon microcone arrays for minimization of optical and overpotential losses during sunlight-driven hydrogen evolution. Sustainable Energy and Fuels, 2019, 3, 2227-2236.	2.5	7
413	Light–Matter Interactions in Films of Randomly Distributed Unidirectionally Scattering Dielectric Nanoparticles. ACS Photonics, 2020, 7, 2105-2114.	3.2	7
414	Nanoscale axial position and orientation measurement of hexagonal boron nitride quantum emitters using a tunable nanophotonic environment. Nanotechnology, 2022, 33, 015001.	1.3	7

#	Article	IF	CITATIONS
415	Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 7576-7587.	1.5	7
416	Low energy ion irradiation of H-terminated Si(001): hydrogen sputtering, beam-induced (2 \tilde{A} – 1) reconstruction, and Si epitaxy. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 293-300.	0.6	6
417	Reflection high-energy electron diffraction analysis of polycrystalline films with grain size and orientation distributions. Journal of Applied Physics, 2002, 92, 5133-5139.	1.1	6
418	Single crystalline BaTiO3 thin films synthesized using ion implantation induced layer transfer. Journal of Applied Physics, 2007, 102, .	1.1	6
419	Limiting acceptance angle to maximize efficiency in solar cells. Proceedings of SPIE, 2011, , .	0.8	6
420	Direct evidence of Mg-Zn-P alloy formation in Mg/Zn < inf > $3 < 1$ inf > $2 < 1$ inf		6
421	Enhanced performance of small GaAs solar cells via edge and surface passivation with trioctylphosphine sulfide. , 2012 , , .		6
422	Electrically independent subcircuits for a seven-junction spectrum splitting photovoltaic module. , 2014, , .		6
423	Photon and carrier management design for nonplanar thin-film copper indium gallium selenide photovoltaics. Solar Energy Materials and Solar Cells, 2017, 161, 149-156.	3.0	6
424	Thermodynamic Efficiency Limit of Bifacial Solar Cells for Various Spectral Albedos., 2017,,.		6
425	Micro-optical Tandem Luminescent Solar Concentrator. , 2017, , .		6
426	Spatiotemporal Imaging of Thickness-Induced Band-Bending Junctions. Nano Letters, 2021, 21, 5745-5753.	4.5	6
427	Light Trapping in Plasmonic Solar Cells. , 2011, , .		6
428	Design of efficient radiative emission and daytime cooling structures with Si ₃ N ₄ and SiO ₂ nanoparticle laminate films. Optics Express, 2020, 28, 35784.	1.7	6
429	The role of point defects in ion-bombardment-enhanced and dopant-enhanced grain growth in silicon thin films. Nuclear Instruments & Methods in Physics Research B, 1989, 39, 64-67.	0.6	5
430	In situreflection electron energy loss spectroscopy measurements of low temperature surface cleaning for Si molecular beam epitaxy. Applied Physics Letters, 1993, 63, 1414-1416.	1.5	5
431	Quantitative Rheed Analysis of Biaxially-Textured Polycrystalline MgO Films on Amorphous Substrates Grown by Ion Beam-Assisted Deposition. Materials Research Society Symposia Proceedings, 1999, 585, 75.	0.1	5
432	Optical Properties of Pseudomorphic Sn _X Ge _{1â^'x} Alloys. Materials Research Society Symposia Proceedings, 1999, 588, 199.	0.1	5

#	Article	IF	CITATIONS
433	The feasibility of inert colloidal processing of silicon nanoparticles. Journal of Colloid and Interface Science, 2005, 283, 414-421.	5.0	5
434	p-n junction heterostructure device physics model of a four junction solar cell., 2006, 6339, 63.		5
435	Electronic properties of low temperature epitaxial silicon thin film photovoltaic devices grown by HWCVD. Thin Solid Films, 2008, 516, 597-599.	0.8	5
436	Surface plasmon enhanced photocurrent in thin GaAs solar cells. , 2008, , .		5
437	InAlAs epitaxial growth for wide band gap solar cells. , 2011, , .		5
438	Dielectric based resonant guided wave networks. Optics Express, 2012, 20, 10674.	1.7	5
439	Earth-abundant ZnSn <inf>x</inf> 0e <inf>1−x</inf> N <inf>2</inf> alloys as potential photovoltaic absorber materials. , 2012, , .		5
440	Spectrum splitting photovoltaics: light trapping filtered concentrator for ultrahigh photovoltaic efficiency. Proceedings of SPIE, 2013, , .	0.8	5
441	Design improvements for the polyhedral specular reflector spectrum-splitting module for ultra-high efficiency (& $\#$ x003E;50%). , 2014, , .		5
442	Reply to 'On the thermodynamics of light trapping in solar cells'. Nature Materials, 2014, 13, 104-105.	13.3	5
443	Growth Mechanism and Electronic Structure of Zn ₃ P ₂ on the Ga-Rich GaAs(001) Surface. Journal of Physical Chemistry C, 2014, 118, 12717-12726.	1.5	5
444	Photonics and Light Science Wish List from COP21 in Paris. ACS Photonics, 2016, 3, 155-157.	3.2	5
445	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20147-20148.	4.0	5
446	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
447	The promise of plasmonics. ACM SIGDA Newsletter, 2007, 37, 1-1.	0.0	5
448	Broadband, Angle- and Polarization-Invariant Antireflective and Absorbing Films by a Scalable Synthesis of Monodisperse Silicon Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23624-23636.	4.0	5
449	Epitaxial Growth of Metastable Snï‡Ge1-ï‡ Alloy Films by Ion-Assisted Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1994, 355, 123.	0.1	4
450	Controlled Grain Size and Location in GE Thin Films on Silicon Dioxide by Low Temperature Selective Solid Phase Crystallization. Materials Research Society Symposia Proceedings, 1995, 403, 113.	0.1	4

#	Article	IF	CITATIONS
451	Local order measurement in SnGe alloys and monolayer Sn films on Si with reflection electron energy loss spectrometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 216-220.	0.9	4
452	A relation between surface oxide and oxygen-defect complexes in solid-phase epitaxial Si regrown from ion-beam-amorphized Si layers. Applied Physics Letters, 2000, 76, 1410-1412.	1.5	4
453	Grain boundary filtration by selective nucleation and solid phase epitaxy of Ge through planar constrictions. Applied Physics Letters, 2000, 77, 4325-4327.	1.5	4
454	Radical Species Distributions in Hot-Wire Chemical Vapor Deposition Probed Via Threshold Ionization Mass Spectrometry and Direct Simulation Monte Carlo Techniques. Materials Research Society Symposia Proceedings, 2001, 664, 321.	0.1	4
455	Wafer Bonding and Layer Transfer For Thin Film Ferroelectrics. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	4
456	A Phase Diagram for Morphology and Properties of Low Temperature Deposited Polycrystalline Silicon Grown by Hot-wire Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2004, 808, 407.	0.1	4
457	Design Approaches and Materials Processes for Ultrahigh Efficiency Lattice Mismatched Multi-Junction Solar Cells. , 2006, , .		4
458	Lattice-Mismatched Monolithic GAAS/INGAAS Two-Junction Solar Cells by Direct Wafer Bonding. , 2006, , .		4
459	Plasmonic light trapping for thin film A-SI:H solar cells. , 2010, , .		4
460	Photovoltaic efficiencies in lattice-matched III-V multijunction solar cells with unconventional lattice parameters. , $2011, , .$		4
461	Photoelectrochemical characterization of Si microwire array solar cells., 2012,,.		4
462	600 mV epitaxial crystal silicon solar cells grown on seeded glass. , 2013, , .		4
463	Full spectrum ultrahigh efficiency photovoltaics. , 2013, , .		4
464	Spectrum splitting photovoltaics: Light trapping filtered concentrator for ultrahigh photovoltaic efficiency. , $2013, , .$		4
465	Light Trapping in Bifacial Solar Modules Using Effectively Transparent Contacts (ETCs)., 2018,,.		4
466	Enhanced Stability and Efficiency for Photoelectrochemical Iodide Oxidation by Methyl Termination and Electrochemical Pt Deposition on n-Type Si Microwire Arrays. ACS Energy Letters, 2019, 4, 2308-2314.	8.8	4
467	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
468	A hybrid coupler for directing quantum light emission with high radiative Purcell enhancement to a dielectric metasurface lens. Journal of Applied Physics, 2021, 130, .	1.1	4

#	Article	IF	CITATIONS
469	Ion Beam Enhanced Grain Growth in Thin Films. Materials Research Society Symposia Proceedings, 1986, 74, 499.	0.1	3
470	Surface and Near-Surface Atom Dynamics During Low Energy Xe Ion Bombardment of Si and Fcc Surfaces. Materials Research Society Symposia Proceedings, 1990, 193, 301.	0.1	3
471	Synthesis of Dislocation Free Si _y (Sn _x C _{1â^'x}) _{1â^'y} Alloys by Molecular Beam Deposition and Solid Phase Epitaxy. Materials Research Society Symposia Proceedings, 1993, 298, 229.	0.1	3
472	ENERGY-FILTERED RHEED AND REELS FOR IN SITU REAL TIME ANALYSIS DURING FILM GROWTH. Surface Review and Letters, 1997, 04, 525-534.	0.5	3
473	Polycrystalline Si Films Fabricated by Low Temperature Selective Nucleation and Solid Phase Epitaxy Process. Materials Research Society Symposia Proceedings, 1997, 485, 67.	0.1	3
474	Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit. Materials Research Society Symposia Proceedings, 2002, 722, 621.	0.1	3
475	Quantitative modelling of nucleation kinetics in experiments for poly-Si growth on SiO2 by hot wire chemical vapor deposition. Thin Solid Films, 2004, 458, 67-70.	0.8	3
476	Charge retention characteristics of silicon nanocrystal layers by ultrahigh vacuum atomic force microscopy. Journal of Applied Physics, 2007, 102, 034305.	1,1	3
477	SUBWAVELENGTH-SCALE PLASMON WAVEGUIDES. , 2007, , 87-104.		3
478	Modeling, synthesis, and characterization of thin film Copper Oxide for solar cells., 2009,,.		3
479	Polyhedral specular reflector design for ultra high spectrum splitting solar module efficiencies (>50%)., 2013,,.		3
480	Quantum Coherence Preservation in Extremely Dispersive Plasmonic Media. Physical Review Applied, 2019, 12, .	1.5	3
481	Ultralight Luminescent Solar Concentrators for Space Solar Power Systems. , 2019, , .		3
482	Photovoltaic operation in the lower atmosphere and at the surface of Venus. Progress in Photovoltaics: Research and Applications, 2020, 28, 545-553.	4.4	3
483	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
484	The Effect of Aging on Tungsten Filament Surface Kinetics in Hot-Wire Chemical Vapor Deposition of Silicon. Materials Research Society Symposia Proceedings, 2002, 715, 2331.	0.1	3
485	Self-Stabilizing Silicon Nitride Lightsails. , 2020, , .		3
486	Optical Characterization of Silicon Nitride Metagrating-Based Lightsails for Self-Stabilization. ACS Photonics, 2022, 9, 1965-1972.	3.2	3

#	Article	IF	Citations
487	Surface Analysis During the Growth of Ge and GexSi1â^'x Alloys on Si by Reflection Electron Energy Loss Spectrometry. Materials Research Society Symposia Proceedings, 1990, 208, 251.	0.1	2
488	Empirical Interatomic Potential for Si-H Interactions. Materials Research Society Symposia Proceedings, 1993, 317, 355.	0.1	2
489	Application of xâ€ray interference method for residual strain measurement in low energy Ar ionâ€bombarded Si (001). Applied Physics Letters, 1994, 64, 434-436.	1.5	2
490	Generalized defect annihilation kinetics for structural relaxation in amorphous silicon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 72, 1-11.	0.6	2
491	Low Temperature Epitaxy of Si on Dihydride-Terminated Si (001): Energetic Versus Thermal Growth. Materials Research Society Symposia Proceedings, 1996, 441, 579.	0.1	2
492	Manipulation and Control of Nucleation and Growth Kinetics with Hydrogen Dilution in Hot-Wire CVD Growth of Poly-Si. Materials Research Society Symposia Proceedings, 2000, 609, 1921.	0.1	2
493	Gas Phase and Surface Kinetic Processes in Hot-Wire Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2000, 609, 621.	0.1	2
494	Ge Layer Transfer To Si For Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2001, 681, 1.	0.1	2
495	<title>In-situ biaxial texture analysis of MgO films during growth on amorphous substrates by ion-beam-assisted deposition</title> ., 2001,,.		2
496	Plasmon-enhanced absorption and photocurrent in ultrathin GaAs solar cells with metallic nanostructures. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	2
497	Increased cell efficiency in InGaAs thin film solar cells with dielectric and metal back reflectors. , 2009, , .		2
498	Effects of bulk and grain boundary recombination on the efficiency of columnar-grained crystalline silicon film solar cells. , 2010, , .		2
499	Thin, free-standing Cu <inf>2</inf> O substrates via thermal oxidation for photovoltaic devices. , 2012, , .		2
500	Accounting for localized defects in the optoelectronic design of thin-film solar cells. , 2012, , .		2
501	Silicon solar cell light-trapping using defect mode photonic crystals. Proceedings of SPIE, 2013, , .	0.8	2
502	Ray trace optimization of a light trapping filtered concentrator for spectrum splitting photovoltaics. , 2014, , .		2
503	Designing and prototyping the polyhedral specular reflector, a spectrum-splitting module with projected $>50\%$ efficiency. , $2015,$, .		2
504	GaP/Si heterojunction solar cells. , 2015, , .		2

#	Article	IF	Citations
505	Resonant dielectric high-contrast gratings as spectrum splitting optical elements for ultrahigh efficiency (>50%) photovoltaics., 2015,,.		2
506	Highly absorbing and high lifetime tapered silicon microwire arrays as an alternative for thin film crystalline silicon solar cells. , 2016 , , .		2
507	Predicting energy production for multijunction photovoltaics: Effects of spectral variation and cumulative irradiance. , 2016 , , .		2
508	Porous Nanomaterials: Porous Nanomaterials for Ultrabroadband Omnidirectional Antiâ€Reflection Surfaces with Applications in High Concentration Photovoltaics (Adv. Energy Mater. 7/2017). Advanced Energy Materials, 2017, 7, .	10.2	2
509	Enhanced Light Trapping in Thin Silicon Solar Cells using Effectively Transparent Contacts (ETCs)., 2017,,.		2
510	Role of Doping Dependent Radiative and Non-radiative Recombination in Determining the Limiting Efficiencies of Silicon Solar Cells. , 2018 , , .		2
511	Predicting Geographic Energy Production for Tandem PV Designs Using a Compact Set of Spectra Correlated by Irradiance. IEEE Journal of Photovoltaics, 2019, 9, 1596-1601.	1.5	2
512	Development of Lattice-Mismatched GaInAsP for Radiation Hardness. IEEE Journal of Photovoltaics, 2020, 10, 103-108.	1.5	2
513	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
514	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
515	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
516	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	3.2	2
517	AlSb as a material for high index contrast nanophotonics. Optical Materials Express, 2021, 11, 1334.	1.6	2
518	Evaluation of the Radiation Resistance of GaAs-based Solar Cells. , 2021, , .		2
519	Holographic spectrum splitter for ultra-high efficiency photovoltaics. Proceedings of SPIE, 2013, , .	0.8	2
520	High Hydrogen Content Silicon Nitride For Photovoltaic Applications Deposited By Hot-Wire Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2002, 715, 1021.	0.1	2
521	Amorphous silicon carbide high contrast gratings as highly efficient spectrally selective visible reflectors. Optics Express, 2022, 30, 26787.	1.7	2
522	Crystal Nucleation in Amorphous Si Thin Films During Ion Irradiation. Materials Research Society Symposia Proceedings, 1990, 187, 113.	0.1	1

#	Article	IF	Citations
523	Low Energy Ar Ion Bombardment of (001) Si: Defects and Surface Morphology. Materials Research Society Symposia Proceedings, 1991, 223, 21.	0.1	1
524	<i>In Situ</i> Analysis of Surface Contaminant Desorption during Low-Temperature Silicon Substrate Cleaning using Reflection Electron Energy Loss Spectrometry. Materials Research Society Symposia Proceedings, 1992, 259, 449.	0.1	1
525	The role of Ga-droplet formation in nanometer-scale GaAs cluster synthesis from organometallic precursors. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1993, 26, 219-221.	1.0	1
526	Stability of Nanometer-Size Si Crystals in Amorphous Si Thin Films under Ion Irradiation. Materials Research Society Symposia Proceedings, 1993, 311, 185.	0.1	1
527	(100) Epitaxial and (111) Polycrystalline Spin Valve Heterostructures on si (100): Magnetotransport and the Importance of Interface Mixing in Ion Beam Sputtering. Materials Research Society Symposia Proceedings, 1995, 384, 409.	0.1	1
528	Synthesis of Size-Classified Silicon Nanocrystals. Materials Research Society Symposia Proceedings, 1995, 405, 259.	0.1	1
529	Synthesis of large-grained poly-Ge templates by selective nucleation and solid phase epitaxy for GaAs solar cells on soda-lime glass. , 1997, , .		1
530	Formation of Direct Energy Gap Group IV Semiconductor Alloys and Quantum Dot Arrays in SnxSilâ^'x /Si and SnxGelâ^'x/Ge Alloy Systems. Materials Research Society Symposia Proceedings, 1999, 583, 349.	0.1	1
531	In Situ Biaxial Texture Analysis of Mgo Films During Growth on Amorphous Substrates by Ion Beam-Assisted Deposition. Materials Research Society Symposia Proceedings, 2001, 672, 1.	0.1	1
532	Quantitative Modelling of Nucleation Kinetics in Experiments for Poly-Si Growth on Sio2 by Hot-Wire Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2001, 664, 131.	0.1	1
533	InGaAs Solar Cells Grown on Wafer-Bonded InP/Si Epitaxial Templates. Materials Research Society Symposia Proceedings, 2007, 1012, 1.	0.1	1
534	Modifying the radiative quantum efficiency of erbium-doped glass in silicon slot waveguides. , 2009, , .		1
535	Advanced silicon processing for active planar photonic devices. Journal of Vacuum Science & Technology B, 2009, 27, 3180.	1.3	1
536	Active plasmonic devices and optical metamaterials. , 2009, , .		1
537	Plasmonic Nanowire Antennae: Conjugated Polymer/Metal Nanowire Heterostructure Plasmonic Antennas (Adv. Mater. 11/2010). Advanced Materials, 2010, 22, .	11.1	1
538	GaP/Si wire array solar cells. , 2010, , .		1
539	Optoelectronic design of multijunction wire-array solar cells. , 2011, , .		1
540	Wafer-scale growth of silicon microwire arrays for photovoltaics., 2011,,.		1

#	Article	IF	CITATIONS
541	Effect of defect-rich epitaxy on crystalline silicon $\!\!\!/$ amorphous silicon heterojunction solar cells and the use of low-mobility layers to improve peformance. , 2011, , .		1
542	Device modeling of an optimized monolithic all lattice-matched 3-junction solar cell with efficiency & amp; $\pm x003E$; 50%., 2012, , .		1
543	Structural and Optoelectronic Characterization of RF Sputtered ZnSnN2(Adv. Mater. 18/2013). Advanced Materials, 2013, 25, 2561-2561.	11.1	1
544	Experimental measurement of lateral transport in the inversion layer of silicon heterojunction solar cells. , $2013, \dots$		1
545	Absorption enhancement in ultra-thin film Si slabs using novel photonic crystal textures. , 2013, , .		1
546	Achieving near-unity broadband absorption in sparse arrays of GaAs NWs via a fundamental understanding of localized radial modes. , 2014, , .		1
547	Positional irradiance measurement: characterization of spectrum-splitting and concentrating optics for photovoltaics. Proceedings of SPIE, 2014, , .	0.8	1
548	Welcome to ACS Photonics. ACS Photonics, 2014, 1, 1-1.	3.2	1
549	Single crystal Cu2O photovoltaics by the floating zone method. , 2015, , .		1
550	Cu-Catalyzed Vapor–Liquid–Solid Growth of SiGe Microwire Arrays with Chlorosilane and Chlorogermane Precursors. Crystal Growth and Design, 2015, 15, 3684-3689.	1.4	1
551	Excitonic effects in photovoltaic materials with large exciton binding energies. , 2016, , .		1
552	Solar Cell Analysis Under Venus Atmosphere Conditions. , 2018, , .		1
553	Transparent, Conductive and Lightweight Superstrates for Perovskite Solar Cells and Modules. , 2018,		1
554	A computationally efficient simulation method for optimizing front contacts of concentrator multijunction solar cells. , 2019, , .		1
555	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
556	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
557	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
558	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1

#	Article	IF	CITATIONS
559	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
560	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
561	A Computationally Efficient Multidiode Model for Optimizing the Front Grid of Multijunction Solar Cells under Concentration. Journal of Renewable Energy, 2020, 2020, 1-10.	2.1	1
562	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
563	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
564	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
565	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
566	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
567	Silicon Heterojunction Microcells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45600-45608.	4.0	1
568	A 20-Year Race to the Bottom. ACS Photonics, 2021, 8, 1-2.	3.2	1
569	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
570	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
571	Visual appearance of microcontacts for solar windows. Journal of Photonics for Energy, 2019, 9, 1.	0.8	1
572	Electrical and Structural Characterization of the Interface of Wafer Bonded InP/Si. Materials Research Society Symposia Proceedings, 2003, 763, 281.	0.1	1
573	Electrically Pumped Supermode Si/InGaAsP Hybrid Lasers. , 2010, , .		1
574	Controlling the dopant profile for SRH suppression at low current densities in λ â‰^ 1330 nm Galn light-emitting diodes. Applied Physics Letters, 2020, 116, 203503.	ıAşP 1.5	1
575	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
576	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1

#	Article	IF	CITATIONS
577	Seeing the light in energy use. Nanophotonics, 2020, 10, 115-116.	2.9	1
578	Ultra-lightweight mirrors with high solar reflectivity and high infrared emissivity for sun-facing radiative thermal management in space. Optics Express, 2022, 30, 28268.	1.7	1
579	Crystal Stability and Microstructural Evolution in Polycrystalline Si Films During Ion Irradiation. Materials Research Society Symposia Proceedings, 1989, 147, 107.	0.1	0
580	Suppression of Crystal Nucleation in Amorphous Si Thin Films by High Energy Ion Irradiation at Intermediate Temperatures. Materials Research Society Symposia Proceedings, 1990, 201, 357.	0.1	0
581	Suppression of Crystal Nucleation in Amorphous Si Thin Films by High Energy Ion Irradiation at Intermediate Temperatures. Materials Research Society Symposia Proceedings, 1990, 205, 87.	0.1	0
582	Dynamics of Microstructure in the Early Stages of Ion Beam Assisted Film Growth. Materials Research Society Symposia Proceedings, 1991, 237, 479.	0.1	0
583	Amplification of Misorientation of Ge Films on Si (100) During Ion-Assisted Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1992, 280, 431.	0.1	0
584	Heterogeneous Reactions of GaAs Quantum Dots with Organometallic Precursors. Materials Research Society Symposia Proceedings, 1992, 283, 771.	0.1	0
585	Generalized Activation Energy Spectrum Theory: A New Approach for modeling Structural Relaxation in Amorphous Solids. Materials Research Society Symposia Proceedings, 1993, 321, 167.	0.1	0
586	Ion Irradiated Amorphous Silicon: A Model Approach to Dynamics of Defect Creation and Annihilation. Materials Research Society Symposia Proceedings, 1993, 311, 221.	0.1	0
587	On the Origin of Visible Luminescence from SIO2 Films Containing Ge Nanocrystals. Materials Research Society Symposia Proceedings, 1995, 405, 247.	0.1	0
588	Growth and Characterization of Epitaxially Stabilized Pseudomorphic α-Sn/Si Heterostructures. Materials Research Society Symposia Proceedings, 1998, 533, 355.	0.1	0
589	Ni-Induced Selective Nucleation and Solid Phase Epitaxy of Large-Grained Poly-Si on Glass. Materials Research Society Symposia Proceedings, 1999, 587, O8.1.1.	0.1	0
590	Why Do Basic Research? And Why Double It?. MRS Bulletin, 2000, 25, 3-4.	1.7	0
591	Study of Vacancy and Impurity Complexes in Si Solid-Phase Epitaxial Crystallization with Positron Annihilation Spectroscopy. Materials Research Society Symposia Proceedings, 2000, 610, 1011.	0.1	0
592	Room at the Bottom is Growing…. MRS Bulletin, 2000, 25, 5-6.	1.7	0
593	Quantitative Charge Imaging of Silicon Nanocrystals by Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2002, 737, 343.	0.1	0
594	Electrical and Structural Characterization of the Interface of Wafer Bonded InP/Si. Materials Research Society Symposia Proceedings, 2003, 768, 241.	0.1	0

#	Article	IF	Citations
595	Total Dose Radiation Effects In Si Nanocrystal Non-Volatile Memory Transistors. Materials Research Society Symposia Proceedings, 2004, 851, 239.	0.1	0
596	Bulk-like ferroelectric and piezoeletric properties of transferred-BaTiO3 single crystal thin films. Materials Research Society Symposia Proceedings, 2004, 811, 73.	0.1	0
597	Chip-Scale Photonics with Plasmonic Components. , 2005, , FTuV4.		0
598	Surface Evolution During Low Temperature Epitaxial Silicon Growth by Hot-Wire Chemical Vapor Deposition: Structural and Electronic Properties., 2006,,.		0
599	Ultralow threshold on-chip toroidal microcavity nanocrystal quantum dot lasers., 2006,,.		0
600	Nanostructures for high-efficiency photovoltaics. , 2008, , .		0
601	Plasmonics in future information and energy generation technologies. , 2010, , .		0
602	Three efficiency benefits from thin film plasmonic solar cells. , 2011, , .		0
603	Conformal plasmonic a-Si:H solar cells with non-periodic light trapping patterns. , 2011, , .		0
604	New Photonic Materials and Devices for Solar Energy Conversion. , 2011, , .		0
605	Active and Tunable Plasmonics and Metamaterials. , 2011, , .		0
606	Title to be Announced. , 2012, , .		0
607	Resonant guided wave networks., 2012,,.		0
608	Silicon coupled channel plasmonic nano-circuits: 4-way power splitting and resonant networks. , 2013, , .		0
609	Graded index Sol-Gel antireflection coatings. , 2013, , .		0
610	Design and growth of III-V on Si microwire array tandem solar cells. , 2013, , .		0
611	Back Cover: Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays (Phys. Status Solidi A 2/2013). Physica Status Solidi (A) Applications and Materials Science, 2013, 210, .	0.8	0
612	Accounting for localized defects in the optoelectronic design of thin-film solar cells. , 2013, , .		0

#	Article	IF	CITATIONS
613	Dielectric Light-Trapping Structures for Ultrathin Silicon and Gallium Arsenide Solar Cells. , 2013, , .		O
614	Nanophotonic design for broadband light management. , 2014, , .		0
615	Photonic design for silicon photovoltaics. , 2014, , .		0
616	Routes to ultrahigh efficiency photovoltaic and photoelectrochemical devices. , 2014, , .		0
617	Fabrication and characterization of ZnSnxGe1â^'xN2 alloys for light absorbers. , 2015, , .		0
618	Molecular Beam Epitaxy of Cu2O Heterostructures for Photovoltaics. , 2015, , .		0
619	Tunable metasurfaces (Presentation Recording). , 2015, , .		0
620	Negative refraction due to discrete plasmon diffraction., 2015,,.		0
621	Plasmonic nanoscale modulators and tunable metasurfaces. , 2015, , .		0
622	Scalable, epitaxy-free fabrication of super-absorbing sparse III-V nanowire arrays for photovoltaic applications (Conference Presentation). , 2016 , , .		0
623	Absorption enhancing and passivating non-planar thin-film device architectures for copper indium gallium selenide photovoltaics. , 2016, , .		0
624	Design for High Efficiency Full Spectrum Photovoltaics. , 2016, , .		0
625	First Impact Factor for ACS Photonics: 5.404. ACS Photonics, 2016, 3, 1149-1149.	3.2	0
626	Field-effect modulation of the local density of optical states in a reflectarray metasurface (Conference Presentation). , 2016 , , .		0
627	Metasurfaces: Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance (Adv. Mater. 31/2017). Advanced Materials, 2017, 29, .	11.1	0
628	Tunable optical response and purcell enhancement of gated plasmonic structures. , 2017, , .		0
629	Energy Band Alignment of ZnS<inf>x</inf> Se<inf> 1 -x</inf> Films on Si for Photovoltaic Carrier-Selective Contacts. , 2018 , , .		0
630	Luminescent Solar Concentrator Tandem-on-Silicon with above 700mV Passivated Contact Silicon Bottom Cell. , 2019, , .		0

#	Article	IF	CITATIONS
631	Probing Surface Chemistry at an Atomic Level: Decomposition of 1-Propanethiol on GaP(001) (2 \tilde{A} — 4) Investigated by STM, XPS, and DFT. Journal of Physical Chemistry C, 2019, 123, 2964-2972.	1.5	О
632	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
633	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	O
634	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
635	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
636	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
637	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
638	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
639	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
640	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
641	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
642	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
643	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
644	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
645	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
646	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
647	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
648	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0

#	Article	IF	Citations
649	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	О
650	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
651	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
652	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
653	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
654	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
655	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
656	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	2.5	0
657	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
658	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
659	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
660	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
661	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
662	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
663	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
664	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
665	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
666	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0

#	Article	IF	CITATIONS
667	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	O
668	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
669	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
670	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
671	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	O
672	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
673	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	O
674	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
675	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
676	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
677	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
678	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
679	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	O
680	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
681	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
682	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
683	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
684	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0

#	Article	IF	CITATIONS
685	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	О
686	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
687	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
688	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
689	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
690	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
691	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
692	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
693	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
694	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
695	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
696	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
697	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
698	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
699	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
700	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
701	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
702	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0

#	Article	IF	CITATIONS
703	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	O
704	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
705	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
706	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Emp; Technology, 2020, 54, 5307-5308.	4.6	0
707	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
708	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
709	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
710	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
711	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
712	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
713	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
714	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
715	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
716	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
717	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
718	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
719	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
720	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0

#	Article	IF	CITATIONS
721	Fabrication techniques for high-performance Si heterojunction (SHJ) microcells., 2021,,.		O
722	Fundamental Photovoltaic Efficiency Limits Due to Semiconductor Band Tails., 2021,,.		0
723	Two-dimensional Transition Metal Dichalcogenide Heterobilayer Emitters for Luminescent Solar Concentrator Photovoltaics. , 2021, , .		0
724	Trip the Light Fantastic. ACS Photonics, 2021, 8, 1506-1507.	3.2	0
725	Array-level inverse design for optimized beam directivity in active metasurfaces. , 2021, , .		0
726	Hybrid metaphotonics for fast and efficient collection of photons from quantum emitters., 2021,,.		0
727	Metasurface Laser Lightsails. , 2021, , .		0
728	Nanostructures for high-efficiency photovoltaics: Harry Atwater interview. SPIE Newsroom, 2008, , .	0.1	0
729	Plasmonic Nanophotonic Devices. , 2010, , .		0
730	Optical Design with Inhomogenous Resonant Guided Wave Networks. , 2010, , .		0
731	Solar Energy Applications of Plasmonics. , 2011, , .		0
732	Electron Optics in Graphene. The Electrical Engineering Handbook, 2012, , 573-594.	0.2	0
733	Nanoscale conducting oxide plasmonic slot waveguide modulator. , 2013, , .		O
734	In situ quantitative analysis of Ge _X Si _{1-X} alloys during growth by reflection EELS. Proceedings Annual Meeting Electron Microscopy Society of America, 1991, 49, 878-879.	0.0	0
735	Harry A. Atwater plenary presentation: Tunable and Quantum Metaphotonics. SPIE Newsroom, 0, , .	0.1	O
736	Millivolt-scale dynamic reflectance modulation in gate-tunable Fano resonant metasurfaces. , 2016, , .		0
737	Artificial magnetism in one-dimensional multilayer metamaterials. , 2017, , .		0
738	Visual Appearance of Effectively Transparent Contacts for Solar Windows., 2018,,.		0

#	Article	IF	CITATIONS
739	Plasmonic Hot Holes: Fundamentals and Devices. , 2019, , .		О
740	Non-Epitxaial GaAs/Organic Heterojunction Solar Cells With 830mV Voc. , 2020, , .		0
741	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
742	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
743	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
744	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
745	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
746	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
747	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
748	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
749	Irradiation Experiments on High Efficiency Nanowire Solar Cells Including Tilted Incidence Angle. , 2020, , .		0
750	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
751	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
752	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	4.6	0
753	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
754	Design of Tunable Nanophotonic Devices. , 2020, , .		0
755	Universal active metasurfaces for dynamic beam steering and reconfigurable focusing at telecommunication wavelengths., 2020,,.		0
756	Mirrored Plasmonic Filter Design via Active Learning of Multi-Fidelity Physical Models., 2020,,.		0

#	Article	IF	CITATIONS
757	All-dielectric multiple quantum well active metasurfaces. , 2020, , .		O
758	Power Handling Requirements for Beam Steering Metasurfaces in Ranging and Communications. , 2021, , .		0
759	ALL-OPTICAL PLASMONIC MODULATORS AND INTERCONNECTS. , 0, , 189-223.		O