Bo Söderpalm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2124014/publications.pdf

Version: 2024-02-01

87843 98753 4,995 113 38 67 citations g-index h-index papers 114 114 114 2953 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology, 1989, 98, 524-529.	1.5	351
2	Voluntary ethanol intake in the rat: effects of nicotinic acetylcholine receptor blockade or subchronic nicotine treatment. European Journal of Pharmacology, 1996, 314, 257-267.	1.7	221
3	Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol. Behavioural Brain Research, 2000, 113, 85-96.	1.2	216
4	Voluntary ethanol intake in the rat and the associated accumbal dopamine overflow are blocked by ventral tegmental mecamylamine. European Journal of Pharmacology, 1998, 358, 189-196.	1.7	174
5	The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine. European Journal of Pharmacology, 1993, 249, 207-213.	1.7	165
6	Ethanol elevates accumbal dopamine levels via indirect activation of ventral tegmental nicotinic acetylcholine receptors. European Journal of Pharmacology, 2003, 467, 85-93.	1.7	151
7	Involvement of corticosterone in the modulation of ethanol consumption in the rat. Alcohol, 1994, 11, 195-202.	0.8	148
8	Accumbal dopamine overflow after ethanol: Localization of the antagonizing effect of mecamylamine. European Journal of Pharmacology, 1997, 334, 149-156.	1.7	148
9	VOLUNTARY ETHANOL INTAKE INCREASES EXTRACELLULAR ACETYLCHOLINE LEVELS IN THE VENTRAL TEGMENTAL AREA IN THE RAT. Alcohol and Alcoholism, 2005, 40, 349-358.	0.9	119
10	Role of different nicotinic acetylcholine receptors in mediating behavioral and neurochemical effects of ethanol in mice. Alcohol, 2002, 28, 157-167.	0.8	118
11	Anxiolytic-like action of centrally administered galanin. Neuroscience Letters, 1993, 164, 17-20.	1.0	112
12	Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues. Psychopharmacology, 2007, 195, 333-343.	1.5	107
13	The Smoking Cessation Medication Varenicline Attenuates Alcohol and Nicotine Interactions in the Rat Mesolimbic Dopamine System. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 225-230.	1.3	101
14	Ethanol-induced locomotor activity: involvement of central nicotinic acetylcholine receptors?. Brain Research Bulletin, 1992, 29, 173-178.	1.4	96
15	Neurocircuitry Involved in the Development of Alcohol Addiction: The Dopamine System and its Access Points. Current Topics in Behavioral Neurosciences, 2011, , 127-161.	0.8	96
16	Is an α-conotoxin MII–sensitive mechanism involved in the neurochemical, stimulatory, and rewarding effects of ethanol?. Alcohol, 2004, 34, 239-250.	0.8	95
17	THE GLYCINE REUPTAKE INHIBITOR ORG 25935 DECREASES ETHANOL INTAKE AND PREFERENCE IN MALE WISTAR RATS. Alcohol and Alcoholism, 2006, 42, 11-18.	0.9	92
18	Varenicline for Treatment of Alcohol Dependence: A Randomized, Placeboâ€Controlled Trial. Alcoholism: Clinical and Experimental Research, 2015, 39, 2189-2199.	1.4	89

#	Article	IF	CITATIONS
19	Accumbal Strychnine-Sensitive Glycine Receptors: An Access Point for Ethanol to the Brain Reward System. Alcoholism: Clinical and Experimental Research, 2005, 29, 27-37.	1.4	87
20	Involvement of Accumbal Glycine Receptors in the Regulation of Voluntary Ethanol Intake in the Rat. Alcoholism: Clinical and Experimental Research, 2005, 29, 38-45.	1.4	83
21	Phosphatidylethanol is Superior to Carbohydrateâ€Deficient Transferrin and <i>γ</i> â€Glutamyltransferase as an Alcohol Marker and is a Reliable Estimate of Alcohol Consumption Level. Alcoholism: Clinical and Experimental Research, 2015, 39, 2200-2208.	1.4	81
22	Glycine Receptors Regulate Dopamine Release in the Rat Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2005, 29, 17-26.	1.4	76
23	Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology, 2011, 61, 1160-1165.	2.0	69
24	Involvement of serotonin in nicotine dependence: Processes relevant to positive and negative regulation of drug intake. Pharmacology Biochemistry and Behavior, 2002, 71, 757-771.	1.3	65
25	Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine. European Journal of Neuroscience, 2006, 23, 3225-3229.	1.2	62
26	Effect of Citalopram on Alcohol Intake in Heavy Drinkers. Alcoholism: Clinical and Experimental Research, 1994, 18, 1133-1136.	1.4	61
27	Nicotinic Acetylcholine Receptors in the Anterior, but Not Posterior, Ventral Tegmental Area Mediate Ethanol-Induced Elevation of Accumbal Dopamine Levels. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 76-82.	1.3	61
28	Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens. Addiction Biology, 2011, 16, 43-54.	1.4	60
29	Efficacy and safety of sodium oxybate in alcoholâ€dependent patients with a very high drinking risk level. Addiction Biology, 2018, 23, 969-986.	1.4	59
30	Neurocircuitry Involved in the Development of Alcohol Addiction: The Dopamine System and its Access Points. Current Topics in Behavioral Neurosciences, 2011, 13, 127-161.	0.8	56
31	The Glycine Reuptake Inhibitor Org 25935 Interacts With Basal and Ethanolâ€Induced Dopamine Release in Rat Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2009, 33, 1151-1157.	1.4	54
32	Changes in glycine receptor subunit expression in forebrain regions of the Wistar rat over development. Brain Research, 2012, 1446, 12-21.	1.1	51
33	Rising taurine and ethanol concentrations in nucleus accumbens interact to produce dopamine release after ethanol administration. Addiction Biology, 2011, 16, 377-385.	1.4	50
34	Glycine Receptors in the Nucleus Accumbens Involved in the Ethanol Intakeâ€Reducing Effect of Acamprosate. Alcoholism: Clinical and Experimental Research, 2010, 34, 39-45.	1.4	48
35	Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rat is regulated by cholinergic interneurons. Neurochemistry International, 2011, 58, 693-699.	1.9	48
36	Does alprazolam, in contrast to diazepam, activate alpha2-adrenoceptors involved in the regulation of rat growth hormone secretion?. Life Sciences, 1986, 38, 1491-1498.	2.0	47

#	Article	IF	CITATIONS
37	Glycine receptor expression in the forebrain of male AA/ANA rats. Brain Research, 2009, 1305, S27-S36.	1.1	46
38	The Glycine Receptor—A Functionally Important Primary Brain Target of Ethanol. Alcoholism: Clinical and Experimental Research, 2017, 41, 1816-1830.	1.4	43
39	The glycine reuptake inhibitor Org24598 and acamprosate reduce ethanol intake in the rat; tolerance development to acamprosate but not to Org24598. Addiction Biology, 2012, 17, 897-907.	1.4	40
40	Characterization of ethanol-induced dopamine elevation in the rat nucleus accumbens. European Journal of Pharmacology, 2007, 555, 148-155.	1.7	39
41	Evidence for a role for dopamine in the diazepam locomotor stimulating effect. Psychopharmacology, 1991, 104, 97-102.	1.5	38
42	Anticonflict and rotarod impairing effects of alprazolam and diazepam in rat after acute and subchronic administration. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1989, 13, 269-283.	2.5	37
43	A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935. Frontiers in Psychiatry, 2011, 2, 8.	1.3	35
44	Involvement of the GABAA/benzodiazepine chloride ionophore receptor complex in the 5,7-DHT induced anticonflict effect. Life Sciences, 1991, 49, 139-153.	2.0	34
45	Peripheral involvement in nicotine-induced enhancement of ethanol intake. Alcohol, 2000, 21, 37-47.	0.8	33
46	Increase in Nucleus Accumbens Dopamine Levels Following Local Ethanol Administration Is Not Mediated by Acetaldehyde. Alcohol and Alcoholism, 2014, 49, 498-504.	0.9	32
47	The involvement of accumbal glycine receptors in the dopamine-elevating effects of addictive drugs. Neuropharmacology, 2014, 82, 69-75.	2.0	32
48	Naloxone reverses disinhibitory/aggressive behavior in 5,7-DHT-lesioned rats; involvement of GABAA receptor blockade?. Neuropharmacology, 1999, 38, 1851-1859.	2.0	31
49	Pharmacology of the benzodiazepines; with special emphasis on alprazolam. Acta Psychiatrica Scandinavica, 1987, 76, 39-46.	2.2	30
50	Efficacy and Safety of the Glycine Transporterâ€1. Inhibitor Org 25935 for the Prevention of Relapse in Alcoholâ€Dependent Patients: A Randomized, Doubleâ€Blind, Placeboâ€Controlled Trial. Alcoholism: Clinical and Experimental Research, 2014, 38, 2427-2435.	1.4	30
51	Serotonergic involvement in conflict behaviour. European Neuropsychopharmacology, 1990, 1, 7-13.	0.3	28
52	Behavioral and neurochemical consequences of repeated nicotine treatment in the serotonin-depleted rat. Psychopharmacology, 2001, 155, 348-361.	1.5	27
53	Glycine Receptors Involved in Acamprosate's Modulation of Accumbal Dopamine Levels: An In Vivo Microdialysis Study. Alcoholism: Clinical and Experimental Research, 2010, 34, 32-38.	1.4	27
54	Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors. Frontiers in Systems Neuroscience, 2011, 5, 85.	1.2	26

#	Article	IF	Citations
55	5-HT1A receptor agonists reduce ethanol-induced locomotor activity in mice. Alcohol, 1994, 11, 157-161.	0.8	23
56	Ethanol impairment of spontaneous alternation behaviour and associated changes in medial prefrontal glutamatergic gene expression precede putative markers of dependence. Pharmacology Biochemistry and Behavior, 2015, 132, 63-70.	1.3	23
57	Testosterone treatment induces behavioral disinhibition in adult male rats. Pharmacology Biochemistry and Behavior, 2003, 75, 481-490.	1.3	22
58	Modest Longâ€Term Ethanol Consumption Affects Expression of Neurotransmitter Receptor Genes in the Rat Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2014, 38, 722-729.	1.4	22
59	Temporal Rewiring of Striatal Circuits Initiated by Nicotine. Neuropsychopharmacology, 2016, 41, 3051-3059.	2.8	22
60	Mechanisms of Alcohol-Nicotine Interactions: Alcoholics Versus Smokers. Alcoholism: Clinical and Experimental Research, 2001, 25, 152S-156S.	1.4	22
61	New Neuronal Networks Involved in Ethanol Reinforcement. Alcoholism: Clinical and Experimental Research, 2003, 27, 209-219.	1.4	21
62	Effects of Serotonergic Manipulations on the Behavioral Sensitization and Disinhibition Associated With Repeated Amphetamine Treatment. Pharmacology Biochemistry and Behavior, 2000, 66, 211-220.	1.3	20
63	\hat{l}^2 -alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine. Amino Acids, 2010, 38, 1051-1055.	1.2	20
64	Gonadectomy Enhances Shock-Induced Behavioral Inhibition in Adult Male Rats. Pharmacology Biochemistry and Behavior, 2000, 65, 731-736.	1.3	19
65	Progressive modulation of accumbal neurotransmission and anxiety-like behavior following protracted nicotine withdrawal. Neuropharmacology, 2018, 128, 86-95.	2.0	18
66	Nicotine produces chronic behavioral sensitization with changes in accumbal neurotransmission and increased sensitivity to reâ€exposure. Addiction Biology, 2016, 21, 397-406.	1.4	17
67	Disinhibitory behavior and GABAA receptor function in serotonin-depleted adult male rats are reduced by gonadectomy. Pharmacology Biochemistry and Behavior, 2000, 67, 613-620.	1.3	16
68	Brain region specific modulation of ethanol-induced depression of GABAergic neurons in the brain reward system by the nicotine receptor antagonist mecamylamine. Alcohol, 2014, 48, 455-461.	0.8	16
69	Involvement of Inhibitory Receptors in Modulating Dopamine Signaling and Synaptic Activity Following Acute Ethanol Exposure in Striatal Subregions. Alcoholism: Clinical and Experimental Research, 2015, 39, 2364-2374.	1.4	16
70	Involvement of lateral septum in alcohol's dopamineâ€elevating effect in the rat. Addiction Biology, 2017, 22, 93-102.	1.4	16
71	Voluntary Ethanol Intake Produces Subregionâ€Specific Neuroadaptations in Striatal and Cortical Areas of Wistar Rats. Alcoholism: Clinical and Experimental Research, 2019, 43, 803-811.	1.4	16
72	Nefazodone attenuates the behavioral and neurochemical effects of ethanol. Alcohol, 1998, 15, 77-86.	0.8	15

#	Article	IF	CITATIONS
73	Nicotinic acetylcholine receptors are required for the conditioned reinforcing properties of sucrose-associated cues. Psychopharmacology, 2010, 212, 321-328.	1.5	15
74	The 5,7-DHT-induced anticonflict effect is dependent on intact adrenocortical function. Life Sciences, 1992, 51, 315-326.	2.0	14
75	Intracerebroventricular 5,7-DHT alters the in vitro function of rat cortical GABAA/benzodiazepine chloride ionophore receptor complexes. Life Sciences, 1992, 51, 327-335.	2.0	14
76	Ethanol-induced dopamine elevation in the rat $\hat{a} \in \text{``Modulatory effects by subchronic treatment with nicotinic drugs. European Journal of Pharmacology, 2007, 555, 139-147.}$	1.7	14
77	High cortisol responders to stress show increased sedation to alcohol compared to low cortisol responders: An alcohol dose–response study. Pharmacology Biochemistry and Behavior, 2016, 143, 65-72.	1.3	13
78	Further characterization of the GlyT-1 inhibitor Org25935: anti-alcohol, neurobehavioral, and gene expression effects. Journal of Neural Transmission, 2017, 124, 607-619.	1.4	13
79	Different dopamine tone in ethanol high―and lowâ€consuming Wistar rats. Addiction Biology, 2020, 25, e12761.	1.4	13
80	Treating alcohol dependence with an abuse and misuse deterrent formulation of sodium oxybate: Results of a randomised, double-blind, placebo-controlled study. European Neuropsychopharmacology, 2021, 52, 18-30.	0.3	13
81	Acute and chronic modulation of striatal endocannabinoidâ€mediated plasticity by nicotine. Addiction Biology, 2019, 24, 355-363.	1.4	12
82	Combined administration of varenicline and bupropion produces additive effects on accumbal dopamine and abolishes the alcohol deprivation effect in rats. Addiction Biology, 2020, 25, e12807.	1.4	12
83	Baseline severity and the prediction of placebo response in clinical trials for alcohol dependence: A metaâ€regression analysis to develop an enrichment strategy. Alcoholism: Clinical and Experimental Research, 2021, 45, 1722-1734.	1.4	12
84	The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnineâ€sensitive glycine receptors. Addiction Biology, 2011, 16, 591-599.	1.4	11
85	Healthy Subjects with a Family History of Alcoholism Show Increased Stimulative Subjective Effects of Alcohol. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	11
86	Stress and consumption of alcohol in humans with a Type 1 family history of alcoholism in an experimental laboratory setting. Pharmacology Biochemistry and Behavior, 2011, 99, 696-703.	1.3	11
87	Acamprosate's ethanol intake-reducing effect is associated with its ability to increase dopamine. Pharmacology Biochemistry and Behavior, 2018, 175, 101-107.	1.3	11
88	Sub-chronic taurine administration induces behavioral sensitization but does not influence ethanol-induced dopamine release in the nucleus accumbens. Pharmacology Biochemistry and Behavior, 2020, 188, 172831.	1.3	11
89	Astrocytes modulate extracellular neurotransmitter levels and excitatory neurotransmission in dorsolateral striatum via dopamine D2 receptor signaling. Neuropsychopharmacology, 2022, 47, 1493-1502.	2.8	11
90	Growth hormone responses to clonidine and GRF in spontaneously hypertensive rats: Neuroendocrine evidence for an enhanced responsiveness of brain alpha2-adrenoceptors in genetical hypertension. Life Sciences, 1986, 39, 2103-2109.	2.0	9

#	Article	IF	Citations
91	Alterations in ethanol-induced accumbal transmission after acute and long-term zinc depletion. Addiction Biology, 2015, 20, 170-181.	1.4	9
92	The Effects of Mirtazapine Versus Placebo on Alcohol Consumption in Male High Consumers of Alcohol. Journal of Clinical Psychopharmacology, 2015, 35, 43-50.	0.7	9
93	Energy drink constituents (caffeine and taurine) selectively potentiate ethanol-induced locomotion in mice. Pharmacology Biochemistry and Behavior, 2019, 187, 172795.	1.3	9
94	Repeated Ethanol but not Phencyclidine Impairs Spontaneous Alternation Behaviour in the Yâ€Maze. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 347-352.	1.2	8
95	An acetylcholineâ€dopamine interaction in the nucleus accumbens and its involvement in ethanol's dopamineâ€releasing effect. Addiction Biology, 2021, 26, e12959.	1.4	7
96	Differential dopamine release by psychosis-generating and non-psychosis-generating addictive substances in the nucleus accumbens and dorsomedial striatum. Translational Psychiatry, 2021, 11, 472.	2.4	7
97	Transcriptional profiling of the rat nucleus accumbens after modest or high alcohol exposure. PLoS ONE, 2017, 12, e0181084.	1.1	7
98	Rising Taurine and Ethanol Concentrations in Nucleus Accumbens Interact to Produce the Dopamine-Activating Effects of Alcohol. Advances in Experimental Medicine and Biology, 2013, 775, 215-223.	0.8	6
99	Effects of systemic glycine on accumbal glycine and dopamine levels and ethanol intake in male Wistar rats. Journal of Neural Transmission, 2021, 128, 83-94.	1.4	6
100	Environment-dependent effects of ethanol on DOPAC and HVA in various brain regions of ethanol-tolerant rats. Psychopharmacology, 1990, 102, 319-324.	1.5	5
101	A family history of Type 1 alcoholism differentiates alcohol consumption in high cortisol responders to stress. Pharmacology Biochemistry and Behavior, 2015, 130, 59-66.	1.3	5
102	Subregion-specific effects on striatal neurotransmission and dopamine-signaling by acute and repeated amphetamine exposure. Neuropharmacology, 2021, 194, 108638.	2.0	5
103	Sodium oxybate for the maintenance of abstinence in alcohol-dependent patients: An international, multicenter, randomized, double-blind, placebo-controlled trial. Journal of Psychopharmacology, 2022, 36, 1136-1145.	2.0	5
104	Minor Adaptations of Ethanol-Induced Release of Taurine Following Chronic Ethanol Intake in the Rat. Advances in Experimental Medicine and Biology, 2017, 975 Pt 1, 217-224.	0.8	4
105	Ethanol and phencyclidine interact with respect to nucleus accumbens dopamine release: differential effects of administration order and pretreatment protocol. Frontiers in Behavioral Neuroscience, 2010, 4, 32.	1.0	3
106	Dose Patterns among Patients Using Low-Dose Buprenorphine Patches. Pain Medicine, 2013, 14, 1374-1380.	0.9	2
107	Ethanol-Induced Taurine Elevation in the Rat Dorsal Striatum. Advances in Experimental Medicine and Biology, 2017, 975 Pt 1, 173-181.	0.8	2
108	The glycine-containing dipeptide leucine-glycine raises accumbal dopamine levels in a subpopulation of rats presenting a lower endogenous dopamine tone. Journal of Neural Transmission, 2022, 129, 395-407.	1.4	2

#	Article	IF	CITATIONS
109	Outcome Measures in Alcohol Studies: A Comment on the ORBITAL Core Outcome Set (Shorter et al.,) Tj ETQq1 1	8.784314	1 ₂ gBT /Ove
110	Differential and long-lasting changes in neurotransmission in the amygdala of male Wistar rats during extended amphetamine abstinence. Neuropharmacology, 2022, 210, 109041.	2.0	2
111	Sustained inhibitory transmission but dysfunctional dopamine D2 receptor signaling in dorsal striatal subregions following protracted abstinence from amphetamine. Pharmacology Biochemistry and Behavior, 2022, 218, 173421.	1.3	1
112	Stress and Addiction. , 2006, , 384-401.		0
113	Outcome Measures in Alcohol Studies: A Comment on the ORBITAL Core Outcome Set (Shorter et al.,) Tj ETQq $1\ 1$	8.78431 ²	argBT/Ove