
Rekha C Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2123914/publications.pdf Version: 2024-02-01

<u> Ρεκμά C Ράτει</u>

#	Article	IF	CITATIONS
1	Relationship between oxidative stress and lifespan in Daphnia pulex. Scientific Reports, 2022, 12, 2354.	1.6	4
2	DYT-PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules, 2022, 12, 713.	1.8	2
3	Opposite actions of two dsRNA-binding proteins PACT and TRBP on RIG-I mediated signaling. Biochemical Journal, 2021, 478, 493-510.	1.7	7
4	Social inequalities in accelerated aging among southern U.S. women: an analysis of the biosocial and behavioral pathways linking social determinants to telomere length. Biodemography and Social Biology, 2021, 66, 118-131.	0.4	0
5	Regulation of PKR activation and apoptosis during oxidative stress by TRBP phosphorylation. International Journal of Biochemistry and Cell Biology, 2021, 137, 106030.	1.2	3
6	Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and elF2α signaling leading to a compromised stress response. Neurobiology of Disease, 2020, 146, 105135.	2.1	18
7	A truncated PACT protein resulting from a frameshift mutation reported in movement disorder DYT16 triggers caspase activation and apoptosis. Journal of Cellular Biochemistry, 2019, 120, 19004-19018.	1.2	11
8	Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Scientific Reports, 2018, 8, 1020.	1.6	31
9	Contribution of the two dsRBM motifs to the doubleâ€stranded RNA binding and protein interactions of PACT. Journal of Cellular Biochemistry, 2018, 119, 3598-3607.	1.2	9
10	ADAR1 and PACT contribute to efficient translation of transcripts containing HIV-1 trans-activating response (TAR) element. Biochemical Journal, 2017, 474, 1241-1257.	1.7	12
11	Inhibition of the inflammatory response to stress by targeting interaction between PKR and its cellular activator PACT. Scientific Reports, 2017, 7, 16129.	1.6	28
12	Involvement of Daphnia pulicaria Sir2 in regulating stress response and lifespan. Aging, 2016, 8, 402-417.	1.4	12
13	Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia. BMC Biotechnology, 2015, 15, 91.	1.7	28
14	Altered Activation of Protein Kinase PKR and Enhanced Apoptosis in Dystonia Cells Carrying a Mutation in PKR Activator Protein PACT. Journal of Biological Chemistry, 2015, 290, 22543-22557.	1.6	42
15	Telomerase Activity and Telomere Length in Daphnia. PLoS ONE, 2015, 10, e0127196.	1.1	30
16	Inhibition of PKR protects against tunicamycin-induced apoptosis in neuroblastoma cells. Gene, 2014, 536, 90-96.	1.0	25
17	Relationship between heat shock protein 70 expression and life span in Daphnia. Mechanisms of Ageing and Development, 2014, 139, 1-10.	2.2	30
18	The PKR activator, PACT, becomes a PKR inhibitor during HIV-1 replication. Retrovirology, 2013, 10, 96.	0.9	56

Rekha C Patel

#	Article	IF	CITATIONS
19	HIV-1 replication changes the function of the PKR activator PACT. Retrovirology, 2013, 10, .	0.9	О
20	STAT1 requirement for PKR-induced cell cycle arrest in vascular smooth muscle cells in response to heparin. Gene, 2013, 524, 15-21.	1.0	5
21	268. Cytokine, 2013, 63, 306-307.	1.4	1
22	Increased interaction between PACT molecules in response to stress signals is required for PKR activation. Journal of Cellular Biochemistry, 2012, 113, 2754-2764.	1.2	42
23	AP-1 Mediated Transcriptional Repression of Matrix Metalloproteinase-9 by Recruitment of Histone Deacetylase 1 in Response to Interferon β. PLoS ONE, 2012, 7, e42152.	1.1	62
24	Stress-Induced Phosphorylation of PACT Reduces Its Interaction with TRBP and Leads to PKR Activation. Biochemistry, 2011, 50, 4550-4560.	1.2	55
25	TRBP Control of PACT-Induced Phosphorylation of Protein Kinase R Is Reversed by Stress. Molecular and Cellular Biology, 2009, 29, 254-265.	1.1	120
26	Essential Role of PACT-Mediated PKR Activation in Tunicamycin-Induced Apoptosis. Journal of Molecular Biology, 2009, 385, 457-468.	2.0	41
27	Differential regulation of HOXA9 expression by nuclear factor kappa B (NF-κB) and HOXA9. Gene, 2008, 408, 187-195.	1.0	32
28	Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Research, 2007, 36, 998-1008.	6.5	40
29	Expression of PACT is regulated by Sp1 transcription factor. Gene, 2007, 388, 74-82.	1.0	13
30	Homeobox gene HOXA9 inhibits nuclear factor-kappa B dependent activation of endothelium. Atherosclerosis, 2007, 195, e50-e60.	0.4	39
31	Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS Journal, 2005, 272, 1425-1439.	2.2	32
32	Regulation of Vascular Smooth Muscle Proliferation by Heparin. Journal of Biological Chemistry, 2005, 280, 15682-15689.	1.6	30
33	The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology, 2003, 315, 283-291.	1.1	58
34	Contribution of Double-Stranded RNA-Activated Protein Kinase Toward Antiproliferative Actions of Heparin on Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1439-1444.	1.1	22
35	The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochemical Journal, 2002, 366, 175-186.	1.7	63
36	Proapoptotic protein PACT is expressed at high levels in colonic epithelial cells in mice. American Journal of Physiology - Renal Physiology, 2002, 283, G801-G808.	1.6	7

Rekha C Patel

#	Article	IF	CITATIONS
37	PACT, a Stress-modulated Cellular Activator of Interferon-induced Double-stranded RNA-activated Protein Kinase, PKR. Journal of Biological Chemistry, 2000, 275, 37993-37998.	1.6	209
38	DRBP76, a Double-stranded RNA-binding Nuclear Protein, Is Phosphorylated by the Interferon-induced Protein Kinase, PKR. Journal of Biological Chemistry, 1999, 274, 20432-20437.	1.6	116
39	PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO Journal, 1998, 17, 4379-4390.	3.5	409
40	A mutant cell line defective in response to double-stranded RNA and in regulating basal expression of interferon-stimulated genes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9442-9447.	3.3	33
41	Requirement of PKR Dimerization Mediated by Specific Hydrophobic Residues for Its Activation by Double-Stranded RNA and Its Antigrowth Effects in Yeast. Molecular and Cellular Biology, 1998, 18, 7009-7019.	1.1	51
42	Specific Mutations Near the Amino Terminus of Double-stranded RNA-dependent Protein Kinase (PKR) Differentially Affect Its Double-stranded RNA Binding and Dimerization Properties. Journal of Biological Chemistry, 1996, 271, 25657-25663.	1.6	77
43	The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8283-8287.	3.3	151
44	Activation of Interferon-inducible 2′ â^'5′ Oligoadenylate Synthetase by Adenoviral VAI RNA. Journal of Biological Chemistry, 1995, 270, 3454-3461.	1.6	57
45	Construction and Expression of an Enzymatically Active Human–Mouse Chimeric Double-Stranded RNA-Dependent Protein Kinase. Journal of Interferon Research, 1992, 12, 389-393.	1.2	4
46	Generation ofMinute phenotypes by a transformed antisense ribosomal protein gene. Genesis, 1992, 13, 256-263.	3.1	21
47	Overproduction and translational regulation of rp49 ribosomal protein mRNA in transgenic Drosophila carrying extra copies of the gene. Molecular Genetics and Genomics, 1990, 221, 171-175.	2.4	6