
Alexandre Morrot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2123209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inactivation of avian influenza viruses by hydrostatic pressure as a potential vaccine development approach. Access Microbiology, 2021, 3, 000220.	0.2	1
2	Critically Ill Coronavirus Disease 2019 Patients Exhibit Hyperactive Cytokine Responses Associated With Effector Exhausted Senescent T Cells in Acute Infection. Journal of Infectious Diseases, 2021, , .	1.9	11
3	Autoimmune Disorders & COVID-19. Medicines (Basel, Switzerland), 2021, 8, 55.	0.7	4
4	Maternal SARS-CoV-2 Infection Associated to Systemic Inflammatory Response and Pericardial Effusion in the Newborn: A Case Report. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 536-539.	0.6	19
5	The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Scientific Reports, 2020, 10, 19630.	1.6	192
6	Editorial: Immune Evasion Strategies in Protozoan-Host Interactions. Frontiers in Immunology, 2020, 11, 609166.	2.2	5
7	Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. Frontiers in Immunology, 2019, 10, 164.	2.2	22
8	How to B(e)-1 Important Cell During Leishmania Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 424.	1.8	10
9	Developing effective vaccines: Cues from natural infection. International Reviews of Immunology, 2018, 37, 249-265.	1.5	10
10	Role of Hormonal Circuitry Upon T Cell Development in Chagas Disease: Possible Implications on T Cell Dysfunctions. Frontiers in Endocrinology, 2018, 9, 334.	1.5	10
11	Immunomodulating role of IL-10-producing B cells in Leishmania amazonensis infection. Cellular Immunology, 2018, 334, 20-30.	1.4	33
12	Implication of Apoptosis for the Pathogenesis of Trypanosoma cruzi Infection. Frontiers in Immunology, 2017, 8, 518.	2.2	21
13	Multiple Myeloma Cells Express Key Immunoregulatory Cytokines and Modulate the Monocyte Migratory Response. Frontiers in Medicine, 2017, 4, 92.	1.2	7
14	Dependency of B-1 Cells in the Maintenance of Splenic Interleukin-10 Producing Cells and Impairment of Macrophage Resistance in Visceral Leishmaniasis. Frontiers in Microbiology, 2017, 8, 978.	1.5	12
15	Unraveling Chagas disease transmission through the oral route: Gateways to Trypanosoma cruzi infection and target tissues. PLoS Neglected Tropical Diseases, 2017, 11, e0005507.	1.3	61
16	Human stem memory T cells (TSCM) as critical players in the long-term persistence of immune responses. Annals of Translational Medicine, 2017, 5, 120-120.	0.7	8
17	Asymmetric cell division regulates the transcriptional balance controlling memory fate decisions in T cells. Annals of Translational Medicine, 2017, 5, 121-121.	0.7	0
18	Timing of lymphocyte trafficking is regulated by the circadian clock. Annals of Translational Medicine, 2017, 5, S21-S21.	0.7	0

ALEXANDRE MORROT

#	Article	IF	CITATIONS
19	Self-renewal capacity of semi-differentiated CD8+ T cells sustains long-term protective responses in chronic persistent infection. Annals of Translational Medicine, 2017, 5, S22-S22.	0.7	Ο
20	Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance. Frontiers in Microbiology, 2016, 7, 348.	1.5	52
21	Role of Small RNAs in Trypanosomatid Infections. Frontiers in Microbiology, 2016, 7, 367.	1.5	6
22	Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease?. Frontiers in Microbiology, 2016, 7, 704.	1.5	16
23	Live-attenuated vaccination increases the diversity of pathogen-specific T cell repertoire triggered in chronic infection responses. Annals of Translational Medicine, 2016, 4, S4-S4.	0.7	0
24	Differential Expression of microRNAs in Thymic Epithelial Cells from Trypanosoma cruzi Acutely Infected Mice: Putative Role in Thymic Atrophy. Frontiers in Immunology, 2015, 6, 428.	2.2	47
25	Ouabain Modulates Zymosan-Induced Peritonitis in Mice. Mediators of Inflammation, 2015, 2015, 1-12.	1.4	27
26	lmmune Evasion Strategies of <i>Trypanosoma cruzi</i> . Journal of Immunology Research, 2015, 2015, 1-7.	0.9	70
27	Modulation of Intrathymic Sphingosine-1-Phosphate Levels Promotes Escape of Immature Thymocytes to the Periphery with a Potential Proinflammatory Role in Chagas Disease. BioMed Research International, 2015, 2015, 1-6.	0.9	4
28	Stress Related Hormonal Circuitry in Chagas Disease. Advances in Neuroimmune Biology, 2014, 5, 91-98.	0.7	0
29	Early Double-Negative Thymocyte Export in Trypanosoma cruzi Infection Is Restricted by Sphingosine Receptors and Associated with Human Chagas Disease. PLoS Neglected Tropical Diseases, 2014, 8, e3203.	1.3	27
30	Tissue signatures influence the activation of intrahepatic CD8+ T cells against malaria sporozoites. Frontiers in Microbiology, 2014, 5, 440.	1.5	9
31	Trans-sialidase from Trypanosoma cruzi enhances the adhesion properties and fibronectin-driven migration of thymocytes. Microbes and Infection, 2013, 15, 365-374.	1.0	18
32	The Role of Sialic Acid-Binding Receptors (Siglecs) in the Immunomodulatory Effects ofTrypanosoma cruziSialoglycoproteins on the Protective Immunity of the Host. Scientifica, 2013, 2013, 1-7.	0.6	3
33	Trypanosoma cruzi Disrupts Thymic Homeostasis by Altering Intrathymic and Systemic Stress-Related Endocrine Circuitries. PLoS Neglected Tropical Diseases, 2013, 7, e2470.	1.3	30
34	Angiotensin II Is a New Component Involved in Splenic T Lymphocyte Responses during Plasmodium berghei ANKA Infection. PLoS ONE, 2013, 8, e62999.	1.1	33
35	Inhibitory Effects of Trypanosoma cruzi Sialoglycoproteins on CD4+ T Cells Are Associated with Increased Susceptibility to Infection. PLoS ONE, 2013, 8, e77568.	1.1	22
36	The Development of Unconventional Extrathymic Activated CD4+CD8+ T Cells in Chagas Disease. ISRN Infectious Diseases, 2013, 2013, 1-11.	0.5	0

Alexandre Morrot

#	Article	IF	CITATIONS
37	Thymus Atrophy and Double-Positive Escape Are Common Features in Infectious Diseases. Journal of Parasitology Research, 2012, 2012, 1-9.	0.5	32
38	Dynamics of Lymphocyte Populations during <i>Trypanosoma cruzi</i> Infection: From Thymocyte Depletion to Differential Cell Expansion/Contraction in Peripheral Lymphoid Organs. Journal of Tropical Medicine, 2012, 2012, 1-7.	0.6	14
39	Resistance to visceral leishmaniasis is severely compromised in mice deficient of bradykinin B2-receptors. Parasites and Vectors, 2012, 5, 261.	1.0	13
40	Cholesterol depletion by methyl-β-cyclodextrin enhances cell proliferation and increases the number of desmin-positive cells in myoblast cultures. European Journal of Pharmacology, 2012, 694, 1-12.	1.7	23
41	Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. Annals of the New York Academy of Sciences, 2012, 1262, 45-50.	1.8	24
42	Extrathymic CD4 ⁺ CD8 ⁺ lymphocytes in Chagas disease: possible relationship with an immunoendocrine imbalance. Annals of the New York Academy of Sciences, 2012, 1262, 27-36.	1.8	21
43	AT1 receptor-mediated angiotensin II activation and chemotaxis of T lymphocytes. Molecular Immunology, 2011, 48, 1835-1843.	1.0	39
44	Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease. PLoS Neglected Tropical Diseases, 2011, 5, e1268.	1.3	42
45	Differential Regional Immune Response in Chagas Disease. PLoS Neglected Tropical Diseases, 2009, 3, e417.	1.3	53
46	IL-4 induces a wide-spectrum intracellular signaling cascade in CD8+T cells. Journal of Leukocyte Biology, 2007, 81, 1102-1110.	1.5	37
47	Bradykinin B2 Receptors of Dendritic Cells, Acting as Sensors of Kinins Proteolytically Released by Trypanosoma cruzi, Are Critical for the Development of Protective Type-1 Responses. PLoS Pathogens, 2007, 3, e185.	2.1	81
48	Cooperative Activation of TLR2 and Bradykinin B2 Receptor Is Required for Induction of Type 1 Immunity in a Mouse Model of Subcutaneous Infection by <i>Trypanosoma cruzi</i> . Journal of Immunology, 2006, 177, 6325-6335.	0.4	81
49	Priming of CD8+ T cell responses following immunization with heat-killedPlasmodiumsporozoites. European Journal of Immunology, 2006, 36, 1179-1186.	1.6	41
50	Protective CD8+ T Cells Induced by Malaria Sporozoites Do Not Undergo Modulation of Interleukin-7 Receptor Expression. Infection and Immunity, 2006, 74, 2495-2497.	1.0	8
51	Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. Journal of Experimental Medicine, 2006, 203, 599-606.	4.2	232
52	IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites. Journal of Experimental Medicine, 2005, 202, 551-560.	4.2	73
53	Effector and memory CD8+ T cells as seen in immunity to malaria. Immunological Reviews, 2004, 201, 291-303.	2.8	70
54	Regulation of the CD8+ T cell responses against Plasmodium liver stages in mice. International Journal for Parasitology, 2004, 34, 1529-1534.	1.3	16

4

#	Article	IF	CITATIONS
55	Early Self-Regulatory Mechanisms Control the Magnitude of CD8+ T Cell Responses Against Liver Stages of Murine Malaria. Journal of Immunology, 2003, 171, 964-970.	0.4	44
56	Short-term antigen presentation and single clonal burst limit the magnitude of the CD8+ T cell responses to malaria liver stages. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11819-11824.	3.3	87
57	IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Medicine, 2002, 8, 166-170.	15.2	217
58	Swift Development of Protective Effector Functions in Naive Cd8+ T Cells against Malaria Liver Stages. Journal of Experimental Medicine, 2001, 194, 173-180.	4.2	126
59	Host Cell Invasion by TRYPANOSOMA cRUZI Is Potentiated by Activation of Bradykinin B2 Receptors. Journal of Experimental Medicine, 2000, 192, 1289-1300.	4.2	216