Aliakbar Tarlani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2123115/publications.pdf

Version: 2024-02-01

1040056 940533 16 429 9 16 citations h-index g-index papers 16 16 16 694 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	New nanoporous TiO2 with controlled porosities emanated from two concurrent correlative templates as potent adsorbents. Nano Structures Nano Objects, 2022, 31, 100881.	3.5	2
2	New Bi2MoO6 nano-shapes toward ultrasensitive enzymeless glucose tracing: Synergetic effect of the Bi-Mo association. Talanta, 2021, 221, 121560.	5.5	10
3	Cetyltrimethylammonium Bromide (CTAB) Bloated Micelles and Merged CTAB/Bolaamphiphiles Self-Assembled Vesicles toward the Generation of Highly Porous Alumina as Efficacious Inorganic Adsorbents. Langmuir, 2019, 35, 11188-11199.	3 . 5	13
4	Generation of versatile titania-silica nano-vehicles using dual templates exploiting as tunable drug releaser. Materials Chemistry and Physics, 2018, 212, 308-317.	4.0	2
5	Multivalent calix[4]arene-based fluorescent sensor for detecting silver ions in aqueous media and physiological environment. Biosensors and Bioelectronics, 2017, 90, 290-297.	10.1	47
6	Enhanced release and drug delivery of celecoxib into physiological environment by the different types of nanoscale vehicles. Applied Surface Science, 2017, 422, 873-882.	6.1	9
7	Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Advances, 2017, 7, 38935-38944.	3.6	12
8	Facile, low-cost, and organic-free fabrication of diverse nanoporous alumina as support for drug release; on the salt effect, calcination temperature, and reaction time dependence. Journal of Sol-Gel Science and Technology, 2017, 83, 627-639.	2.4	1
9	Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. Nanomaterials, 2017, 7, 215.	4.1	43
10	NiO–MgO Solid Solution Prepared by Sol–Gel Method as Precursor for Ni/MgO Methane Dry Reforming Catalyst: Effect of Calcination Temperature on Catalytic Performance. Catalysis Letters, 2016, 146, 238-248.	2.6	69
11	Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance. International Journal of Hydrogen Energy, 2015, 40, 2445-2451.	7.1	87
12	One-pot synthesis of NiO–MgO nanocatalysts for CO 2 reforming of methane: The influence of active metal content on catalytic performance. Journal of Natural Gas Science and Engineering, 2015, 27, 1165-1173.	4.4	41
13	New ZnO nanostructures as non-enzymatic glucose biosensors. Biosensors and Bioelectronics, 2015, 67, 601-607.	10.1	70
14	Generation of highly stable and active strong base sites on organized nano-porous alumina by calcium oxide. Solid State Sciences, 2013, 16, 76-80.	3.2	8
15	Heteropolyacid-catalyzed dimerization of $\hat{l}\pm$ -methylstyrene; on the efficiency and selectivity dependence. Catalysis Communications, 2011, 14, 89-91.	3.3	8
16	Wells–Dawson tungsten heteropolyacid-catalyzed highly selective dimerization of α-methylstyrene to 1,1,3-trimethyl-3-phenylindan. Catalysis Communications, 2007, 8, 1153-1155.	3.3	7