Rujin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212307/publications.pdf Version: 2024-02-01

RIUN CHEN

#	Article	IF	CITATIONS
1	The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biology, 2021, 19, 96.	3.8	39
2	The <i>Medicago truncatula</i> PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. Journal of Experimental Botany, 2020, 71, 1562-1573.	4.8	12
3	Negative gravitropic response of roots directs auxin flow to control root gravitropism. Plant, Cell and Environment, 2019, 42, 2372-2383.	5.7	33
4	A Remote <i>cis</i> -Regulatory Region Is Required for <i>NIN</i> Expression in the Pericycle to Initiate Nodule Primordium Formation in <i>Medicago truncatula</i> . Plant Cell, 2019, 31, 68-83.	6.6	101
5	Functional Genomics and Genetic Control of Compound Leaf Development in Medicago truncatula: An Overview. Methods in Molecular Biology, 2018, 1822, 197-203.	0.9	5
6	Physical Mutagenesis in Medicago truncatula Using Fast Neutron Bombardment (FNB) for Symbiosis and Developmental Biology Studies. Methods in Molecular Biology, 2018, 1822, 61-69.	0.9	9
7	An Array-based Comparative Genomic Hybridization Platform for Efficient Detection of Copy Number Variations in Fast Neutron-induced Medicago truncatula Mutants. Journal of Visualized Experiments, 2017, , .	0.3	8
8	Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula. Journal of Experimental Botany, 2017, 68, 5937-5948.	4.8	77
9	LeafletAnalyzer, an Automated Software for Quantifying, Comparing and Classifying Blade and Serration Features of Compound Leaves during Development, and among Induced Mutants and Natural Variants in the Legume Medicago truncatula. Frontiers in Plant Science, 2017, 8, 915.	3.6	15
10	AUXIN RESPONSE FACTOR3 Regulates Compound Leaf Patterning by Directly Repressing PALMATE-LIKE PENTAFOLIATA1 Expression in Medicago truncatula. Frontiers in Plant Science, 2017, 8, 1630.	3.6	21
11	Negative gravitropism in plant roots. Nature Plants, 2016, 2, 16155.	9.3	82
12	Increasing seed size and quality by manipulating <i>BIG SEEDS1</i> in legume species. Proceedings of the United States of America, 2016, 113, 12414-12419.	7.1	117
13	Root Traits and Phenotyping Strategies for Plant Improvement. Plants, 2015, 4, 334-355.	3.5	274
14	Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. Journal of Experimental Botany, 2015, 66, 1237-1244.	4.8	40
15	Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biology, 2015, 15, 131.	3.6	181
16	Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the <i>Medicago truncatula dnf7</i> mutant. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15232-15237.	7.1	154
17	An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15238-15243.	7.1	128
18	Regulation of Compound Leaf Development. Plants, 2014, 3, 1-17.	3.5	11

Rujin Chen

#	Article	IF	CITATIONS
19	PHANTASTICA regulates leaf polarity and petiole identity in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2014, 9, e28121.	2.4	8
20	Regulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula. Plant Physiology, 2014, 164, 216-228.	4.8	41
21	The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis. Plant Molecular Biology, 2014, 85, 81-94.	3.9	10
22	<i>Medicago truncatula esn1</i> Defines a Genetic Locus Involved in Nodule Senescence and Symbiotic Nitrogen Fixation. Molecular Plant-Microbe Interactions, 2013, 26, 893-902.	2.6	29
23	Signaling and Transport of Auxin and Plant Development. Signaling and Communication in Plants, 2013, , 239-258.	0.7	1
24	Loss of Abaxial Leaf Epicuticular Wax in <i>Medicago truncatula irg1/palm1</i> Mutants Results in Reduced Spore Differentiation of Anthracnose and Nonhost Rust Pathogens. Plant Cell, 2012, 24, 353-370.	6.6	112
25	Conserved genetic determinant of motor organ identity in <i>Medicago truncatula</i> and related legumes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11723-11728.	7.1	57
26	A <i>Medicago truncatula</i> Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation Â. Plant Physiology, 2012, 159, 1686-1699.	4.8	109
27	<i>NO APICAL MERISTEM</i> (<i>MtNAM</i>) regulates floral organ identity and lateral organ separation in <i>Medicago truncatula</i> . New Phytologist, 2012, 195, 71-84.	7.3	68
28	<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	5.7	211
29	Regulation of Compound Leaf Development in <i>Medicago truncatula</i> by <i>Fused Compound Leaf1,</i> a Class M <i>KNOX</i> Gene Â. Plant Cell, 2011, 23, 3929-3943.	6.6	54
30	Auxin efflux transporter MtPIN10 regulates compound leaf and flower development inMedicago truncatula. Plant Signaling and Behavior, 2011, 6, 1537-1544.	2.4	37
31	Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10754-10759.	7.1	80
32	Palmate-like pentafoliata1 encodes a novel Cys(2)His(2) zinc finger transcription factor essential for compound leaf morphogenesis in Medicago truncatula. Plant Signaling and Behavior, 2010, 5, 1134-1137.	2.4	10
33	The E3 Ubiquitin Ligase SCFTIR1/AFB and Membrane Sterols Play Key Roles in Auxin Regulation of Endocytosis, Recycling, and Plasma Membrane Accumulation of the Auxin Efflux Transporter PIN2 in <i>Arabidopsis thaliana</i> ÂÂÂ. Plant Cell, 2009, 21, 568-580.	6.6	112
34	Deletion-Based Reverse Genetics in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2009, 151, 1077-1086.	4.8	97
35	Control of Compound Leaf Development by <i>FLORICAULA/LEAFY</i> Ortholog <i>SINGLE LEAFLET1</i> in <i>Medicago truncatula</i> Â Â Â Â. Plant Physiology, 2008, 146, 1759-1772.	4.8	139
36	Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis thaliana. PLoS ONE, 2008, 3, e1510.	2.5	214

Rujin Chen

8

#	Article	IF	CITATIONS
37	Loss ofAt4function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant Journal, 2006, 45, 712-726.	5.7	205
38	Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases. Plant Journal, 2005, 42, 188-200.	5.7	87
39	The promotion of gravitropism inArabidopsisroots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant Journal, 2004, 39, 113-125.	5.7	118
40	ALTERED RESPONSE TO GRAVITY Is a Peripheral Membrane Protein That Modulates Gravity-Induced Cytoplasmic Alkalinization and Lateral Auxin Transport in Plant Statocytes. Plant Cell, 2003, 15, 2612-2625.	6.6	169
41	Gravitropism in Higher Plants1. Plant Physiology, 1999, 120, 343-350.	4.8	230

42 Auxin Transport and Recycling of PIN Proteins in Plants. , 0, , 139-157.