Jaume Puy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2122242/publications.pdf

Version: 2024-02-01

136740 168136 141 3,838 32 53 h-index citations g-index papers 142 142 142 2396 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic Speciation Analysis and Bioavailability of Metals in Aquatic Systems. Environmental Science &	4.6	291
2	Model Predictions of Metal Speciation in Freshwaters Compared to Measurements by In Situ Techniques. Environmental Science & E	4.6	178
3	Comparison of Analytical Techniques for Dynamic Trace Metal Speciation in Natural Freshwaters. Environmental Science & Dynamic Trace Metal Speciation in Natural Freshwaters.	4.6	167
4	Dissolution Kinetics and Solubility of ZnO Nanoparticles Followed by AGNES. Journal of Physical Chemistry C, 2012, 116, 11758-11767.	1.5	152
5	Voltammetric lability of metal complexes at spherical microelectrodes with various radii. Journal of Electroanalytical Chemistry, 2001, 505, 85-94.	1.9	106
6	AGNES: a new electroanalytical technique for measuring free metal ion concentration. Journal of Electroanalytical Chemistry, 2004, 566, 95-109.	1.9	102
7	In Situ Measurements of Metal Complex Exchange Kinetics in Freshwater. Environmental Science & Emp; Technology, 2007, 41, 3179-3185.	4.6	89
8	Segregation of peach and nectarine (Prunus persica (L.) Batsch) cultivars according to their organoleptic characteristics. Postharvest Biology and Technology, 2006, 39, 10-18.	2.9	82
9	Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biology and Technology, 2007, 44, 271-276.	2.9	78
10	Biochemical characterisation of core browning and brown heart disorders in pear by multivariate analysis. Postharvest Biology and Technology, 2004, 31, 29-39.	2.9	73
11	Multivariate analysis of maturity stages, including quality and aroma, in ?Royal Glory? peaches and ?Big Top? nectarines. Journal of the Science of Food and Agriculture, 2002, 82, 1842-1849.	1.7	53
12	Evaluation of the Koutecký–Koryta approximation for voltammetric currents generated by metal complex systems with various labilities. Journal of Electroanalytical Chemistry, 2002, 526, 10-18.	1.9	53
13	Interpretation of diffusion gradients in thin films (DGT) measurements: a systematic approach. Environmental Chemistry, 2015, 12, 112.	0.7	51
14	Effective Affinity Distribution for the Binding of Metal lons to a Generic Fulvic Acid in Natural Waters. Environmental Science & Environmental Scienc	4.6	50
15	Key Role of the Resin Layer Thickness in the Lability of Complexes Measured by DGT. Environmental Science & Technology, 2011, 45, 4869-4875.	4.6	49
16	Contribution of Partially Labile Complexes to the DGT Metal Flux. Environmental Science & Emp; Technology, 2011, 45, 5317-5322.	4.6	49
17	Lability and mobility effects on mixtures of ligands under steady-state conditions. Physical Chemistry Chemical Physics, 2003, 5, 5091.	1.3	48
18	Induced reactant adsorption in metalâ€"polyelectrolyte systems: pulse polarographic study. Analytica Chimica Acta, 1992, 268, 261-274.	2.6	43

#	Article	IF	CITATIONS
19	Relationships between Volatile Production, Fruit Quality, and Sensory Evaluation in Granny Smith Apples Stored in Different Controlled-Atmosphere Treatments by Means of Multivariate Analysis. Journal of Agricultural and Food Chemistry, 1999, 47, 3791-3803.	2.4	43
20	Relationships Between Leaf and Fruit Nutrients and Fruit Quality Attributes in Golden Smoothee Apples Using Multivariate Regression Techniques. Journal of Plant Nutrition, 2004, 27, 313-324.	0.9	42
21	Determination of Zn2+ concentration with AGNES using different strategies to reduce the deposition time. Journal of Electroanalytical Chemistry, 2005, 576, 21-32.	1.9	42
22	Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of) Tj ETQq0 0 Total Environment, 2012, 421-422, 238-244.	0 rgBT /O 3.9	verlock 10 Tf 40
23	In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth. Scientific Reports, 2018, 8, 16125.	1.6	39
24	Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned) Tj ETQq0 (Chemistry, 2008, 617, 141-148.	0 0 rgBT /0 1.9	Overlock 10 T
25	Pb-binding to various dissolved organic matter in urban aquatic systems: Key role of the most hydrophilic fraction. Geochimica Et Cosmochimica Acta, 2011, 75, 4005-4019.	1.6	38
26	Labile trace metal concentration measurements in marine environments: From coastal to open ocean areas. TrAC - Trends in Analytical Chemistry, 2019, 116, 92-101.	5.8	38
27	Characterization of Fuji Apples from Different Harvest Dates and Storage Conditions from Measurements of Volatiles by Gas Chromatography and Electronic Nose. Journal of Agricultural and Food Chemistry, 2004, 52, 3069-3076.	2.4	36
28	Humic acid complexation to Zn and Cd determined with the new electroanalytical technique AGNES. Environmental Chemistry, 2007, 4, 347.	0.7	36
29	Conditional Affinity Spectra of Pb ²⁺ â^'Humic Acid Complexation from Data Obtained with AGNES. Environmental Science & Environmental Science	4.6	36
30	Lability of complexes in steady-state finite planar diffusion. Journal of Electroanalytical Chemistry, 2006, 588, 303-313.	1.9	35
31	Kinetic Signatures of Metals in the Presence of Suwannee River Fulvic Acid. Environmental Science & En	4.6	34
32	Reverse pulse polarography of labile metal + macromolecule systems with induced reactant adsorption: theoretical analysis and determination of complexation and adsorption parameters. Journal of Electroanalytical Chemistry, 1994, 375, 307-318.	1.9	33
33	Measurement of Metals Using DGT: Impact of Ionic Strength and Kinetics of Dissociation of Complexes in the Resin Domain. Analytical Chemistry, 2014, 86, 7740-7748.	3.2	33
34	Electrostatic and specific binding to macromolecular ligands. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 2-13.	2.3	32
35	Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES. Analyst, The, 2011, 136, 4337.	1.7	32
36	Voltammetric Analysis of Heterogeneity in Metal Ion Binding by Humics. Environmental Science & Emp; Technology, 2001, 35, 1097-1102.	4.6	30

#	Article	IF	CITATIONS
37	A comparison between the determination of free Pb(II) by two techniques: Absence of gradients and Nernstian equilibrium stripping and resin titration. Analytica Chimica Acta, 2007, 599, 41-50.	2.6	30
38	Ligand Mixture Effects in Metal Complex Lability. Journal of Physical Chemistry A, 2007, 111, 4304-4311.	1.1	28
39	Lability Criteria in Diffusive Gradients in Thin Films. Journal of Physical Chemistry A, 2012, 116, 6564-6573.	1.1	28
40	Building bridges: an integrated strategy for sustainable food production throughout the value chain. Molecular Breeding, 2013, 32, 743-770.	1.0	28
41	Chemometric analyses of ?Golden Smoothee? apples treated with two preharvest calcium spray strategies in the growing season. Journal of the Science of Food and Agriculture, 2001, 81, 943-952.	1.7	27
42	Complexation isotherms in metal speciation studies at trace concentration levels. Voltammetric techniques in environmental samples. Physical Chemistry Chemical Physics, 2002, 4, 3764-3773.	1.3	27
43	Potentiostatic reversible reaction when both reactant and product are adsorbed at the dropping mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 158, 217-230.	0.3	26
44	Measurement of Free Zinc Concentration in Wine with AGNES. Journal of Agricultural and Food Chemistry, 2008, 56, 8296-8302.	2.4	26
45	Induced reactant adsorption in normal pulse polarography of labile metal polyelectrolyte systems part 1. Study of current-potential relationship assuming potential-independent adsorption parameters. Journal of Electroanalytical Chemistry, 1992, 326, 299-316.	1.9	25
46	Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: Theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems. Journal of Electroanalytical Chemistry, 2007, 600, 275-284.	1.9	25
47	Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films. Analytica Chimica Acta, 2012, 717, 143-150.	2.6	25
48	Voltammetry of labile metal-macromolecular systems for any ligand-to-metal ratio, including adsorption phenomena. The role of the stability constant. Journal of Electroanalytical Chemistry, 1994, 374, 223-234.	1.9	24
49	Use of activity coefficients for bound and free sites to describe metal–macromolecule complexation. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2783-2794.	1.7	24
50	Voltammetric lability of multiligand complexes: the case of ML2. Journal of Electroanalytical Chemistry, 2004, 571, 121-132.	1.9	24
51	Metal (Pb, Cd, and Zn) Binding to Diverse Organic Matter Samples and Implications for Speciation Modeling. Environmental Science & Environmental Scien	4.6	24
52	Analytical Expressions for Feedback Currents at the Scanning Electrochemical Microscope. Journal of Physical Chemistry B, 2000, 104, 7993-8000.	1.2	23
53	Pre-harvest calcium treatments in relation to the respiration rate and ethylene production of†Golden Smoothee†apples. Journal of the Science of Food and Agriculture, 2004, 84, 765-771.	1.7	22
54	Lability Criteria for Successive Metal Complexes in Steady-State Planar Diffusion. Journal of Physical Chemistry B, 2006, 110, 891-899.	1.2	22

#	Article	IF	CITATIONS
55	Acid-base properties of dissolved organic matter extracted from the marine environment. Science of the Total Environment, 2020, 729, 138437.	3.9	22
56	Study of a simple redox system with adsorption of both reactant and product at the DME when a time dependent potential is applied. Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 183, 27-39.	0.3	21
57	The use of microelectrodes with AGNES. Journal of Electroanalytical Chemistry, 2007, 606, 134-140.	1.9	21
58	Relationship between Acoustic Firmness and Magness Taylor Firmness in Royal Gala and Golden Smoothee Apples. Food Science and Technology International, 2009, 15, 31-40.	1,1	21
59	Limits of the Linear Accumulation Regime of DGT Sensors. Environmental Science & Emp; Technology, 2013, 47, 10438-10445.	4.6	21
60	A theoretical approach to describe monolayer-liposome lipid interaction. Biophysical Chemistry, 1990, 36, 47-55.	1.5	20
61	Lability of a Mixture of Metal Complexes under Steady-State Planar Diffusion in a Finite Domain. Journal of Physical Chemistry B, 2006, 110, 13661-13669.	1.2	20
62	PANEL CONSONANCE IN THE SENSORY EVALUATION OF APPLE ATTRIBUTES: INFLUENCE OF MEALINESS ON SWEETNESS PERCEPTION. Journal of Sensory Studies, 2008, 23, 656-670.	0.8	20
63	Study of a simple redox system with adsorption of both reactant and product at the DME when a time dependent potential is applied. Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 183, 73-89.	0.3	19
64	Induced reactant adsorption in normal pulse polarography of labile metal + polyelectrolyte systems. Journal of Electroanalytical Chemistry, 1992, 328, 271-285.	1.9	19
65	Extending the Use of Diffusive Gradients in Thin Films (DGT) to Solutions Where Competition, Saturation, and Kinetic Effects Are Not Negligible. Analytical Chemistry, 2017, 89, 6567-6574.	3.2	19
66	Free indium concentration determined with AGNES. Science of the Total Environment, 2018, 612, 269-275.	3.9	19
67	Study of a simple redox system with adsorption of both reactant and product at the DME when a time dependent potential is applied. Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 183, 41-56.	0.3	18
68	The impact of high Zn° concentrations on the application of AGNES to determine free Zn(II) concentration. Journal of Electroanalytical Chemistry, 2010, 638, 131-142.	1.9	18
69	Voltammetry of labile metalâ€"complex systems with induced reactant adsorption. Theoretical analysis for any ligand-to-metal ratio. Journal of Electroanalytical Chemistry, 1993, 360, 1-25.	1.9	17
70	Interpretation of speciation measurements on labile metal–macromolecular systems by voltammetric techniques. Analyst, The, 1996, 121, 1855-1861.	1.7	17
71	Amalgamation effects in reverse pulse polarography at spherical electrodes. Influence on speciation measurements. Journal of Electroanalytical Chemistry, 1998, 442, 151-167.	1.9	17
72	Affinity distribution functions in multicomponent heterogeneous adsorption. Analytical inversion of isotherms to obtain affinity spectra. Journal of Chemical Physics, 2004, 120, 9266-9276.	1.2	17

#	Article	IF	CITATIONS
73	Model-Independent Link between the Macroscopic and Microscopic Descriptions of Multidentate Macromolecular Binding: Relationship between Stepwise, Intrinsic, and Microscopic Equilibrium Constants. Journal of Physical Chemistry B, 2009, 113, 15145-15155.	1.2	17
74	Potentiostatic reversible reaction when both reactant and product are adsorbed at the dropping mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 158, 231-252.	0.3	16
75	Voltammetry of heterogeneous labile metal–macromolecular systems for any ligand-to-metal ratio. Journal of Electroanalytical Chemistry, 2000, 484, 107-119.	1.9	16
76	A semi-grand canonical Monte Carlo simulation model for ion binding to ionizable surfaces: Proton binding of carboxylated latex particles as a case study. Journal of Chemical Physics, 2011, 135, 184103.	1.2	16
77	Non-purged voltammetry explored with AGNES. Physical Chemistry Chemical Physics, 2013, 15, 17510.	1.3	16
78	Influence of the adsorption phenomena on the NPP and RPP limiting currents for labile metal-macromolecule systems. Journal of Electroanalytical Chemistry, 1998, 457, 229-246.	1.9	15
79	The impact of the transient uptake flux on bioaccumulation. Marine Chemistry, 2004, 85, 89-102.	0.9	15
80	lon binding to polyelectrolytes: Monte Carlo simulations versus classical mean field theories. Theoretical Chemistry Accounts, 2009, 123, 127-135.	0.5	15
81	Lability of metal complexes at spherical sensors. Dynamic voltammetric measurements. Physical Chemistry Chemical Physics, 2010, 12, 5396.	1.3	15
82	Determination of the Free Metal Ion Concentration Using AGNES Implemented with Environmentally Friendly Bismuth Film Electrodes. Analytical Chemistry, 2015, 87, 6071-6078.	3.2	15
83	Speciation of Zn, Fe, Ca and Mg in wine with the Donnan Membrane Technique. Food Chemistry, 2018, 239, 1143-1150.	4.2	15
84	Time weighted average concentrations measured with Diffusive Gradients in Thin films (DGT). Analytica Chimica Acta, 2019, 1060, 114-124.	2.6	15
85	Study of a simple redox system with adsorption of both reactant and product at the DME when a time dependent potential is applied. Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 183, 57-72.	0.3	14
86	Monte Carlo simulation of diffusion-controlled response functions at 2D experimental rough electrodes. Journal of Electroanalytical Chemistry, 1993, 348, 221-246.	1.9	14
87	Analytical solution for the steady-state diffusion towards an inlaid disc microelectrode in a multi-layered medium. Journal of Electroanalytical Chemistry, 1997, 440, 1-25.	1.9	14
88	Conditional equilibrium constants in multicomponent heterogeneous adsorption: The conditional affinity spectrum. Journal of Chemical Physics, 2006, 124, 044710.	1.2	14
89	Metal Flux in Ligand Mixtures. 2. Flux Enhancement Due to Kinetic Interplay: Comparison of the Reaction Layer Approximation with a Rigorous Approach. Journal of Physical Chemistry A, 2009, 113, 6572-6580.	1.1	14
90	Kinetic mixture effects in diffusion gradients in thin films (DGT). Physical Chemistry Chemical Physics, 2013, 15, 11349.	1.3	14

#	Article	IF	CITATIONS
91	Free Zn2+ determination in natural freshwaters of the Pyrenees: towards on-site measurements with AGNES. Environmental Chemistry, 2015, 12, 329.	0.7	14
92	Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) for the determination of [Zn2+] in estuarine waters. Analytica Chimica Acta, 2016, 912, 32-40.	2.6	14
93	Voltammetric currents for any ligand-to-metal concentration ratio in fully labile metal-macromolecular complexation. Easy computations, analytical properties of the currents and a graphical method to estimate the stability constant. Journal of Electroanalytical Chemistry, 1999, 472, 42-52.	1.9	13
94	Experimental verification of the metal flux enhancement in a mixture of two metal complexes: the Cd/NTA/glycine and Cd/NTA/citric acid systems. Physical Chemistry Chemical Physics, 2010, 12, 1131-1138.	1.3	13
95	A formalism for performing chronocoulometry at a stationary planar or spherical electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 224, 1-26.	0.3	12
96	Competitive Ion Complexation to Polyelectrolytes:  Determination of the Stepwise Stability Constants. The Ca ²⁺ /H ⁺ /Polyacrylate System. Journal of Physical Chemistry B, 2007, 111, 10421-10430.	1,2	12
97	Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions. Geochimica Et Cosmochimica Acta, 2010, 74, 5216-5227.	1.6	12
98	Dissolution and Phosphate-Induced Transformation of ZnO Nanoparticles in Synthetic Saliva Probed by AGNES without Previous Solid–Liquid Separation. Comparison with UF-ICP-MS. Environmental Science & Echnology, 2019, 53, 3823-3831.	4.6	12
99	Influence of adsorption on calibration curves in normal pulse polarography. Analytica Chimica Acta, 1995, 305, 273-284.	2.6	11
100	Basis of the voltammetric analysis of labile metalâ€"homofunctional macromolecule complexation. Journal of Electroanalytical Chemistry, 1995, 391, 29-40.	1.9	11
101	Application of Maximum Entropy Formalism in the Determination of the Affinity Spectrum in Macromolecular Complexation. Environmental Science & Environ	4.6	11
102	Determination of free metal ion concentrations with AGNES in low ionic strength media. Journal of Electroanalytical Chemistry, 2013, 689, 276-283.	1.9	11
103	Determination of the Complexing Capacity of Wine for Zn Using the Absence of Gradients and Nernstian Equilibrium Stripping Technique. Journal of Agricultural and Food Chemistry, 2013, 61, 1051-1059.	2.4	11
104	Influence of the settling of the resin beads on diffusion gradients in thin films measurements. Analytica Chimica Acta, 2015, 885, 148-155.	2.6	11
105	Accumulation of Mg to Diffusive Gradients in Thin Films (DGT) Devices: Kinetic and Thermodynamic Effects of the Ionic Strength. Analytical Chemistry, 2016, 88, 10245-10251.	3.2	11
106	Theoretical aspects of dynamic metal speciation with electrochemical techniques. Current Opinion in Electrochemistry, 2017, 1, 80-87.	2.5	11
107	Multivariate Analysis of Quality and Mineral Parameters on Golden Smoothee Apples Treated Before Harvest with Calcium and Stored in Controlled Atmosphere. Food Science and Technology International, 2002, 8, 139-146.	1.1	11
108	Transient biouptake flux and accumulation by microorganisms: The case of two types of sites with Langmuir adsorption. Marine Chemistry, 2006, 99, 162-176.	0.9	10

#	Article	IF	Citations
109	Competitive Cd ²⁺ /H ⁺ Complexation to Polyacrylic Acid Described by the Stepwise and Intrinsic Stability Constants. Journal of Physical Chemistry B, 2008, 112, 10092-10100.	1.2	10
110	Semi-empirical full-wave expression for induced reactant adsorption in normal pulse polarography of labile metal—polyelectrolyte systems. Analytica Chimica Acta, 1993, 273, 297-304.	2.6	9
111	Numerical procedures in electrochemical simulation. International Journal of Quantum Chemistry, 1994, 51, 357-367.	1.0	9
112	Conditional affinity spectra underlying NICA isotherm. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 156-166.	2.3	9
113	Comparison of different speciation techniques to measure Zn availability in hydroponic media. Analytica Chimica Acta, 2018, 1035, 32-43.	2.6	9
114	Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Frontiers in Chemistry, 2021, 9, 624511.	1.8	9
115	Multivariate Analysis of Superficial Scald Susceptibility on Granny Smith Apples Dipped with Different Postharvest Treatments. Journal of Agricultural and Food Chemistry, 1999, 47, 4854-4858.	2.4	8
116	Interpreting Ion Fluxes to Channel Arrays in Monolayers. Langmuir, 2007, 23, 10581-10588.	1.6	8
117	Adsorption in double potential step chronocoulometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241, 89-104.	0.3	7
118	Binding Curve from Normalized Limiting Currents of Labile Heterogeneous Metal-Macromolecular Systems. The Case of Cd/Humic Acid. Electroanalysis, 2003, 15, 452-459.	1.5	7
119	Effects of a mixture of ligands on metal accumulation in diffusive gradients in thin films (DGT). Environmental Chemistry, 2018, 15, 183.	0.7	7
120	Full wave analysis of stripping chronopotentiometry at scanned deposition potential (SSCP): Obtaining binding curves in labile heterogeneous macromolecular systems for any metal-to-ligand ratio. Journal of Electroanalytical Chemistry, 2020, 873, 114436.	1.9	7
121	Prediction of crude protein and classification of the growth stage of wheat plant samples from NIR spectra. Journal of Agricultural Science, 2004, 142, 517-524.	0.6	6
122	New methodology to measure low free indium (III) concentrations based on the determination of the lability degree of indium complexes. Assessment of In(OH)3 solubility product. Journal of Electroanalytical Chemistry, 2019, 847, 113185.	1.9	6
123	Seasonal Variations in Proton Binding Characteristics of Dissolved Organic Matter Isolated from the Southwest Baltic Sea. Environmental Science & Envi	4.6	6
124	Developments in the diffusive gradients in thin-films technique for the speciation of oxyanions and platinum group elements in aquatic systems. TrAC - Trends in Analytical Chemistry, 2022, 147, 116513.	5.8	6
125	Complexation to macromolecules with a large number of sites. Journal of Chemical Physics, 1999, 111, 2818-2828.	1.2	5
126	Voltammetry of heterogeneous labile metal–macromolecular systems for any ligand-to-metal ratio. Journal of Electroanalytical Chemistry, 2001, 514, 83-93.	1.9	5

#	Article	IF	CITATIONS
127	Voltammetry of heterogeneous labile metal-macromolecular systems for any ligand-to-metal ratio Journal of Electroanalytical Chemistry, 2002, 530, 23-32.	1.9	5
128	Free Zn2+ determination in systems with Zn-Glutathione. Journal of Electroanalytical Chemistry, 2015, 756, 207-211.	1.9	5
129	Availability of metals to DGT devices with different configurations. The case of sequential Ni complexation. Science of the Total Environment, 2021, 779, 146277.	3.9	5
130	Behaviour of the current in a membrane-covered disc microelectrode under steady-state conditions. Analyst, The, 1996, 121, 1863-1868.	1.7	4
131	Ion Fluxes to Channel Arrays in Monolayers. Computing the Variable Permeability from Currents. Langmuir, 2003, 19, 4694-4700.	1.6	4
132	Determination of Free Metal Ion Concentrations Using Screenâ€Printed Electrodes and AGNES with the Charge as Response Function. Electroanalysis, 2011, 23, 619-627.	1.5	4
133	Interpreting the DGT Measurement. , 2016, , 93-122.		4
134	Effective concentration signature of Zn in a natural water derived from various speciation techniques. Science of the Total Environment, 2022, 806, 151201.	3.9	4
135	Experimental Design Procedures in the Calibration of Quality Parameters of Alfalfa Pellets from near Infrared Spectra. Journal of Near Infrared Spectroscopy, 2004, 12, 167-176.	0.8	3
136	Voltammetry of heterogeneous labile metal–macromolecular systems for any ligand to metal ratio: part IV. Binding curve from the polarographic waves. Journal of Electroanalytical Chemistry, 2005, 577, 311-321.	1.9	3
137	Assessment of labilities of metal complexes with the dynamic ion exchange technique. Environmental Chemistry, 2019, 16, 151.	0.7	2
138	AGNES in irreversible systems: The indium case. Journal of Electroanalytical Chemistry, 2021, 901, 115750.	1.9	2
139	Comment on: Deuterium nuclear fusion at room temperature: A pertinent inequality on barrier penetration. Journal of Chemical Physics, 1990, 93, 6118-6119.	1.2	1
140	Working with a Set of Filter near Infrared Instruments. Journal of Near Infrared Spectroscopy, 2011, 19, 47-54.	0.8	1
141	Comparing a Fully Optimized Continuous (FOCUS) method with the analytical inversion of Non Ideal Competitive Adsorption (NICA) for determining the conditional affinity spectrum (CAS) of H and Pb binding to natural organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 127785.	2.3	1