Simon E Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2122199/publications.pdf

Version: 2024-02-01

108	2,414	25 h-index	43
papers	citations		g-index
122	122	122	3279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and reactivity of \hat{l}_{\pm} -sulfenyl- \hat{l}^2 -chloroenones, including oxidation and Stille cross-coupling to form chalcone derivatives. Tetrahedron, 2021, 88, 132091.	1.0	3
2	Investigating microcrystalline cellulose crystallinity using Raman spectroscopy. Cellulose, 2021, 28, 8971-8985.	2.4	8
3	Dirhodium Carboxylate Catalysts from 2â€Fenchyloxy or 2â€Menthyloxy Arylacetic Acids: Enantioselective Câ^'H Insertion, Aromatic Addition and Oxonium Ylide Formation/Rearrangement. ChemCatChem, 2021, 13, 4318-4324.	1.8	4
4	Epimers with distinct mechanical behaviours. CrystEngComm, 2021, 23, 5848-5855.	1.3	1
5	Isoquinolinequinone <i>N</i> -oxides as anticancer agents effective against drug resistant cell lines. Organic and Biomolecular Chemistry, 2020, 18, 557-568.	1.5	16
6	A new spodium bond driven coordination polymer constructed from mercury(<scp>ii</scp>) azide and 1,2-bis(pyridin-2-ylmethylene)hydrazine. New Journal of Chemistry, 2020, 44, 21100-21107.	1.4	21
7	Tetrel Bonding and Other Non-Covalent Interactions Assisted Supramolecular Aggregation in a New Pb(II) Complex of an Isonicotinohydrazide. Molecules, 2020, 25, 4056.	1.7	25
8	Ambipolar pentacyclic diamides with interesting electrochemical and optoelectronic properties. Chemical Communications, 2020, 56, 14893-14896.	2.2	0
9	Synthesis of 1,2,5-oxathiazole- $\langle i \rangle$ S $\langle i \rangle$ -oxides by 1,3-dipolar cycloadditions of nitrile oxides to \hat{i} ±-oxo sulfines. Organic and Biomolecular Chemistry, 2019, 17, 622-638.	1.5	4
10	Regioselective Thermal [3+2]-Dipolar Cycloadditions of \hat{l} ±-Diazoacetates with \hat{l} ±-Sulfenyl/Sulfinyl/Sulfonyl- \hat{l} 2 -Chloroacrylamide Derivatives to Form Densely Functionalised Pyrazoles. European Journal of Organic Chemistry, 2019, 2019, 5368-5384.	1.2	13
11	Desymmetrization by Asymmetric Copper-Catalyzed Intramolecular C–H Insertion Reactions of α-Diazo-β-oxosulfones. Journal of Organic Chemistry, 2019, 84, 7543-7563.	1.7	14
12	Predicting Nucleation of Isonicotinamide from the Solvent–Solute Interactions of Isonicotinamide in Common Organic Solvents. Journal of Physical Chemistry A, 2018, 122, 3301-3312.	1.1	11
13	Exploring the Crystal Landscape of 3-Methyl-2-phenylbutyramide: Crystallization of Metastable Racemic Forms from the Stable Conglomerate. Crystal Growth and Design, 2018, 18, 3549-3557.	1.4	5
14	Substrate and Catalyst Effects in the Enantioselective Copperâ€Catalysed C–H Insertion Reactions of αâ€Diazoâ€Î²â€oxo Sulfones. European Journal of Organic Chemistry, 2018, 2018, 2277-2289.	1.2	13
15	Dynamic kinetic resolution of 2-methyl-2-nitrocyclohexanol: Combining the intramolecular nitroaldol (Henry) reaction & Dynamic Resolution. Tetrahedron, 2018, 74, 1435-1443.	1.0	9
16	Pd-Catalyzed One-Pot Borylation/Intramolecular Asymmetric Arylation on α-Ketiminoamides: Innovative Approach to Chiral 3-Amino-2-oxindoles. Synlett, 2018, 29, 497-502.	1.0	5
17	Efficient S-Acylation of Thiourea. SynOpen, 2018, 02, 0263-0267.	0.8	O
18	Tracking Cocrystallization of Active Pharmaceutical Ingredients with Benzoic Acid Coformer Using Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). Crystal Growth and Design, 2018, 18, 6528-6537.	1.4	3

#	Article	IF	Citations
19	Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Crystal Growth and Design, 2018, 18, 4571-4577.	1.4	23
20	Synthesis of Cyclic \hat{l} ±-Diazo- \hat{l}^2 -keto Sulfoxides in Batch and Continuous Flow. Journal of Organic Chemistry, 2017, 82, 3666-3679.	1.7	14
21	Enantioselective copper catalysed intramolecular C–H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent. Organic and Biomolecular Chemistry, 2017, 15, 2609-2628.	1.5	12
22	Symmetry assisted tuning of bending and brittle multi-component forms of probenecid. Chemical Communications, 2017, 53, 3381-3384.	2.2	27
23	Hydrolase-mediated resolution of the hemiacetal in 2-chromanols: The impact of remote substitution. Tetrahedron: Asymmetry, 2017, 28, 577-585.	1.8	8
24	Intramolecular Direct Arylation of 1,3â€Diketoneâ€Derived Enol Ethers in a Synthesis of Tricyclic Oxoisochromene Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 1529-1534.	2.1	9
25	Will they co-crystallize?. CrystEngComm, 2017, 19, 5336-5340.	1.3	67
26	Synthesis and Antiproliferative Activity of Novel Heterocyclic Indole-Trimethoxyphenyl Conjugates. Pharmaceuticals, 2017, 10, 62.	1.7	2
27	The impact of storage conditions upon gentamicin coated antimicrobial implants. Journal of Pharmaceutical Analysis, 2016, 6, 374-381.	2.4	12
28	Exploring the Scope of Asymmetric Synthesis of \hat{l}^2 -Hydroxy- \hat{l}^3 -lactams via Noyori-type Reductions. Organic Letters, 2016, 18, 4978-4981.	2.4	14
29	Diversity in a simple co-crystal: racemic and kryptoracemic behaviour. Chemical Communications, 2016, 52, 8309-8312.	2.2	11
30	Methyl tetra-O-acetyl- \hat{l}_{\pm} -d-glucopyranuronate: crystal structure and influence on the crystallisation of the \hat{l}^2 anomer. Carbohydrate Research, 2016, 425, 35-39.	1.1	3
31	Design and Synthesis of Ternary Cocrystals Using Carboxyphenols and Two Complementary Acceptor Compounds. Crystal Growth and Design, 2016, 16, 59-69.	1.4	40
32	Cinchona-catalysed, Enantioselective Synthesis of \hat{l}^2 -Peroxycarboxylic Acids, \hat{l}^2 -Peroxyesters and \hat{l}^2 -Peroxyalcohols. Current Organic Chemistry, 2016, 20, 2633-2638.	0.9	2
33	Novel co-crystals of the nutraceutical sinapic acid. CrystEngComm, 2015, 17, 4832-4841.	1.3	39
34	Demonstrating the Influence of Solvent Choice and Crystallization Conditions on Phenacetin Crystal Habit and Particle Size Distribution. Organic Process Research and Development, 2015, 19, 1826-1836.	1.3	35
35	Investigating Câ• £ ···l Halogen Bonding for Cocrystallization with Primary Thioamides. Crystal Growth and Design, 2015, 15, 3442-3451.	1.4	27
36	Asymmetric Aldol–Tishchenko Reaction of Sulfinimines. Organic Letters, 2015, 17, 5642-5645.	2.4	20

#	Article	IF	CITATIONS
37	Cocrystallization of Nutraceuticals. Crystal Growth and Design, 2015, 15, 984-1009.	1.4	87
38	Synthetic and Mechanistic Aspects on the Competition between C–H Insertion and Hydride Transfer in Copper-Mediated Transformations of α-Diazo-β-Keto Sulfones. Synlett, 2014, 25, 591-595.	1.0	6
39	Pd-catalysed intramolecular regioselective arylation of 2-pyrones, pyridones, coumarins and quinolones by C–H bond functionalization. Tetrahedron, 2014, 70, 7120-7127.	1.0	29
40	Insight into the Mechanism of Formation of Channel Hydrates via Templating. Crystal Growth and Design, 2014, 14, 1158-1166.	1.4	10
41	Catalyst and substituent effects on the rhodium(II)-catalysed intramolecular Buchner reaction. Tetrahedron, 2014, 70, 6870-6878.	1.0	22
42	Enantioselective copper catalysed Câ \in "H insertion reaction of 2-sulfonyl-2-diazoacetamides to form \hat{I}^3 -lactams. Organic and Biomolecular Chemistry, 2014, 12, 7612-7628.	1.5	25
43	Supramolecular stacking motifs in the solid state of amide and triazole derivatives of cellobiose. Carbohydrate Research, 2014, 388, 67-72.	1.1	1
44	Crystal Landscape of Primary Aromatic Thioamides. Crystal Growth and Design, 2014, 14, 2753-2762.	1.4	28
45	Investigation of steric and electronic effects in the copper-catalysed asymmetric oxidation of sulfides. Tetrahedron, 2013, 69, 10168-10184.	1.0	29
46	Co-crystallisation through halogen bonding with racemic or enantiopure sulfinamides. CrystEngComm, 2013, 15, 7571.	1.3	6
47	Synthetic approaches to the daucane sesquiterpene derivatives employing the intramolecular Buchner cyclisation of α-diazoketones. Tetrahedron, 2013, 69, 1778-1794.	1.0	16
48	Hydrogen bonding in crystal forms of primary amide functionalised glucose and cellobiose. Carbohydrate Research, 2013, 374, 29-39.	1.1	7
49	Crystal Polymorphism of Methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-d-glucopyranouronate. Journal of Chemical Crystallography, 2013, 43, 138-143.	0.5	3
50	Structure–function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS. Organic and Biomolecular Chemistry, 2012, 10, 8903.	1.5	39
51	Investigating the influence of the sulfur oxidation state on solid state conformation. CrystEngComm, 2012, 14, 7848.	1.3	0
52	Understanding the <i>p</i> -Toluenesulfonamide/Triphenylphosphine Oxide Crystal Chemistry: A New 1:1 Cocrystal and Ternary Phase Diagram. Crystal Growth and Design, 2012, 12, 869-875.	1.4	26
53	Utilizing Sulfoxide···lodine Halogen Bonding for Cocrystallization. Crystal Growth and Design, 2012, 12, 2969-2977.	1.4	25
54	Preparation and characterisation of solid state forms of paracetamol-O-glucuronide. Carbohydrate Research, 2012, 349, 108-112.	1.1	12

#	Article	IF	Citations
55	Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal. International Journal of Pharmaceutics, 2012, 422, 24-32.	2.6	36
56	Cocrystals of Fenamic Acids with Nicotinamide. Crystal Growth and Design, 2011, 11, 3522-3528.	1.4	100
57	Unzipping the Dimer in Primary Amides by Cocrystallization with Sulfoxides. Crystal Growth and Design, 2011, 11, 4433-4439.	1.4	11
58	A practical chemo-enzymatic approach to highly enantio-enriched cyanohydrin acetates. Tetrahedron: Asymmetry, 2011, 22, 2144-2150.	1.8	4
59	Expanding the crystal landscape of isonicotinamide: concomitant polymorphism and co-crystallisation. CrystEngComm, 2011, 13, 6923.	1.3	45
60	The Use of Co-crystals for the Determination of Absolute Stereochemistry: An Alternative to Salt Formation. Journal of Organic Chemistry, 2011, 76, 1159-1162.	1.7	17
61	Addition-substitution reactions of 2-thio-3-chloroacrylamides with carbon, nitrogen, oxygen, sulfur and selenium nucleophiles. Organic and Biomolecular Chemistry, 2011, 9, 2452.	1.5	16
62	Evaluation of the Bruker SMART X2S: crystallography for the nonspecialist?. Journal of Applied Crystallography, 2011, 44, 213-215.	1.9	33
63	Solidâ€state characterization of novel active pharmaceutical ingredients: Cocrystal of a salbutamol hemiadipate salt with adipic acid (2:1:1) and salbutamol hemisuccinate salt. Journal of Pharmaceutical Sciences, 2011, 100, 3268-3283.	1.6	33
64	Synthesis and NMR Binding Studies towards Rational Design of a Series of Electronâ€Withdrawing Diamide Receptors/Organocatalysts. European Journal of Organic Chemistry, 2011, 2011, 1125-1132.	1.2	14
65	Synthesis of enantioenriched sulfoxides. Arkivoc, 2011, 2011, 1-110.	0.3	91
66	Diastereoselective sulfur oxidation of 2-thio-3-chloroacrylamides. Tetrahedron: Asymmetry, 2010, 21, 871-884.	1.8	15
67	Efficient kinetic bioresolution of 2-nitrocyclohexanol. Tetrahedron: Asymmetry, 2010, 21, 1011-1016.	1.8	15
68	Synthesis and stereoselective oxidation of \hat{l} ±-thio- \hat{l} 2-chloropropenyloxazolidin-2-ones. Tetrahedron: Asymmetry, 2010, 21, 2550-2558.	1.8	5
69	Mimics of a R ₂ ² (8) Hydrogenâ€Bond Dimer Motif: Synthesis and Influence on the Crystallisation of Sulfathiazole and Sulfapyridine. European Journal of Organic Chemistry, 2010, 2010, 1134-1141.	1.2	3
70	1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with nitrile oxides and nitrones. Tetrahedron, 2010, 66, 4564-4572.	1.0	15
71	Synthesis of 3-halo-analogues of HHQ, subsequent cross-coupling and first crystal structure of Pseudomonas quinolone signal (PQS). Tetrahedron Letters, 2010, 51, 5919-5921.	0.7	30
72	Highly Enantioselective Intramolecular Copper Catalyzed Câ $^{\circ}$ H Insertion Reactions of Î \pm -Diazosulfones. Journal of the American Chemical Society, 2010, 132, 1184-1185.	6.6	75

#	Article	IF	CITATIONS
73	1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with diazoalkanes. Organic and Biomolecular Chemistry, 2010, 8, 2735.	1.5	26
74	The influence of reaction conditions on the Diels–Alder cycloadditions of 2-thio-3-chloroacrylamides; investigation of thermal, catalytic and microwave conditions. Organic and Biomolecular Chemistry, 2010, 8, 5602.	1.5	21
75	Sulfoxides: Potent Co-Crystal Formers. Crystal Growth and Design, 2010, 10, 4243-4245.	1.4	25
76	Crystal Polymorphs and Transformations of 2-lodo-4-nitroaniline. Crystal Growth and Design, 2010, 10, 4303-4309.	1.4	5
77	Does intermolecular Sî€Oâ√H–C–Sî€O hydrogen bonding in sulfoxides and sulfones provide a robust supramolecular synthon in the solid state?. CrystEngComm, 2010, 12, 2910.	1.3	16
78	Convenient and robust one-pot synthesis of symmetrical and unsymmetrical benzyl thioethers from benzyl halides using thiourea. Arkivoc, 2010, 2010, 216-228.	0.3	16
79	Synthesis of aryl benzyl NH-sulfoximines. Tetrahedron, 2009, 65, 10660-10670.	1.0	18
80	Investigation of the chemoselective and enantioselective oxidation of \hat{l}_{\pm} -thio- \hat{l}_{\pm} -chloroacrylamides. Tetrahedron: Asymmetry, 2008, 19, 1256-1273.	1.8	13
81	Coaxial metal and magnetic alloy nanotubes in polycarbonate templates by electroless deposition. Electrochemistry Communications, 2008, 10, 1419-1422.	2.3	36
82	Effect of 1-Deoxy- <scp>d</scp> -lactose upon the Crystallization of <scp>d</scp> -Lactose. Crystal Growth and Design, 2008, 8, 3927-3934.	1.4	18
83	Chemoselectivity and Enantioselectivity in Copper-Catalysed Oxidation of Aryl Benzyl Sulfides. Synlett, 2007, 2007, 1501-1506.	1.0	4
84	Impact of sulfur substituents on the C–Hâ√O interaction of terminal alkynes in crystal engineering. CrystEngComm, 2007, 9, 1041.	1.3	12
85	Monomeric and polymeric derivatives of 5-aminoisophthalic acid as selective inhibitors of the l²-polymorph of l-glutamic acid. CrystEngComm, 2007, 9, 72-77.	1.3	13
86	Crystal polymorphism of pharmaceuticals: probing crystal nucleation at the molecular level. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 550-555.	2.5	4
87	Synthetic and X-ray diffraction studies of borosiloxane cages [R′Si(ORBO)3SiR′] and the adducts of [ButSi{O(PhB)O}3SiBut] with pyridine or N,N,N′,N′-tetramethylethylenediamine. Polyhedron, 2007, 26, 2482-2492.	1.0	18
88	Effect of the steric demand and hydrogen bonding capability of additives on the crystal polymorphism of sulfathiazole. CrystEngComm, 2006, 8, 327.	1.3	14
89	Asymmetric Synthesis of Aryl Benzyl Sulfoxides by Vanadium-Catalysed Oxidation: A Combination of Enantioselective Sulfide Oxidation and Kinetic Resolution in Sulfoxide Oxidation. European Journal of Organic Chemistry, 2006, 2006, 4500-4509.	1.2	33
90	Kinetic Resolution in Vanadium-Catalyzed Sulfur Oxidation as an Efficient Route to Enantiopure Aryl Benzyl Sulfoxides. Synlett, 2006, 2006, 1569-1573.	1.0	2

#	Article	IF	CITATIONS
91	Structural Control of Mesoporous Silica Nanowire Arrays in Porous Alumina Membranes. Chemistry of Materials, 2004, 16, 4851-4855.	3.2	110
92	4-Bromophenylboronate Derivatives of Ring and Cage Borosilicates. Collection of Czechoslovak Chemical Communications, 2002, 67, 1051-1060.	1.0	19
93	Synthesis, crystal and molecular structures of three triphenylsilanol amine adducts. Polyhedron, 2002, 21, 1689-1694.	1.0	13
94	Dynamic Equilibria in the Products of Intramolecular Buchner Additions of Diazoketones to Aryl Rings Bearing Methoxy Substituents. Journal of Organic Chemistry, 2001, 66, 7166-7177.	1.7	45
95	4-Ethynyl-1,2-methylenedioxybenzene at 150â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 412-413.	0.4	1
96	Synthesis and structure verification of an analogue of kuanoniamine A. Journal of the Chemical Society Perkin Transactions 1, 1999, , 437-442.	0.9	33
97	Lewis acid mediated elimination and rearrangement reactions of \hat{l}_{\pm} -chlorosulfides derived from phenylthio-substituted 4,5-dihydrofuran-3(2Hâ \in Š)-ones Journal of the Chemical Society Perkin Transactions 1, 1999, , 3667-3675.	0.9	9
98	Rhodium catalysed decomposition of \hat{l} ±-diazosulfoxides: Formation of \hat{l} ±-oxo sulfines as intermediates. Tetrahedron Letters, 1998, 39, 3849-3852.	0.7	19
99	Orthopalladated triaryl phosphite complexes as highly active catalysts in biaryl coupling reactions. Chemical Communications, 1998, , 2095-2096.	2.2	176
100	Synthesis and characterisation of chelating polycarboxylate ligands capable of forming intermolecular, complementary triple hydrogen bonds. Journal of the Chemical Society Dalton Transactions, 1998, , 1869-1878.	1.1	17
101	Platinum(II) phosphine complexes of dicarboxylates and ammonia: crystal structures of [{Pt(PPh3)2}{Â μ -1,3-(O2C)2C6H4}2], [{Pt(PPh3)2(NH3)}2{Â μ -1,4-(O2C)2C6H4}][PF6]2and cis-[Pt(PPh3)2(NH3)2][NO3]2. Journal of the Chemical Society Dalton Transactions, 1997, , 1295-1300.	1.1	21
102	Synthesis and characterisation of three Group 10 metal dithiadiazolyl complexes. Journal of the Chemical Society Dalton Transactions, 1997, , 377-384.	1.1	11
103	A cluster model for the catalytic hydrogenation of CFCs and the synthesis and structural characterisation (when X = Br) of $[Pd4(\hat{l}/43-CF)(\hat{l}/4-X)3(PBut 3)4](X = Cl, Br)$. Chemical Communications, 1997, , 285-286.	2.2	7
104	Hydrogen-Bonded Complexes of Aromatic Crown Ethers with (9-Anthracenyl)methylammonium Derivatives. Supramolecular Photochemistry and Photophysics. pH-Controllable Supramolecular Switching. Journal of the American Chemical Society, 1997, 119, 10641-10651.	6.6	127
105	Reaction of [SNS][AsF6] with Hg(CN)2 and PhHgCN: Preparation and crystal structures of [Hg()2][AsF6]2 and [PhS4N3Ph][AsF6]. Polyhedron, 1996, 15, 1877-1886.	1.0	9
106	Tin-119 NMR shielding anisotropy and molecular structure. Journal of Molecular Structure, 1995, 347, 309-319.	1.8	23
107	The preparation and X-ray crystal structure of the first metal–1,3,2,4-dithiadiazolylium salt, [Hg(CNSNS)2][AsF6]2, a transfer agent for the dithiadiazolylium ring. Journal of the Chemical Society Chemical Communications, 1994, , 29-30.	2.0	9
108	Novel bonding modes in metallo–dithiadiazolyl complexes: preparation and crystal structures of [Pt(SNCPhNS-S,S)(PPh3)2]·MeCN and [Pt3(Âμ-SNCPhNS-S,S)2(PPh3)4]·2PhMe. Journal of the Chemical Society Chemical Communications, 1994, , 1779-1780.	2.0	21