
Angel Merlos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inverse Low Gain Avalanche Detectors (iLGADs) for precise tracking and timing applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 958, 162545.	1.6	10
2	Test beam characterization of irradiated 3D pixel sensors. Journal of Instrumentation, 2020, 15, C03017-C03017.	1.2	5
3	Results on proton-irradiated 3D pixel sensors interconnected to RD53A readout ASIC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 944, 162625.	1.6	8
4	Reconfigurable multiplexed point of Care System for monitoring type 1 diabetes patients. Biosensors and Bioelectronics, 2019, 136, 38-46.	10.1	15
5	id="d1e137" altimg="si4.gif"> <mml:mn>50</mml:mn> <mml:mspace class="nbsp" width="1em"></mml:mspace> <mml:mi mathvariant="normal">î¼4<mml:mi mathvariant="normal">m</mml:mi>thin Low Gain Avalanche Detectors (LGAD) for timing applications. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators. Spectrometers. Detectors and Associated Equipment. 2019, 924.</mml:mi 	1.6	19
6	Radiation hardness of thin Low Gain Avalanche Detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 891, 68-77.	1.6	34
7	Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector. Journal of Instrumentation, 2018, 13, P06017-P06017.	1.2	29
8	Radiation hardness of gallium doped low gain avalanche detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 898, 53-59.	1.6	8
9	Studies of uniformity of 50Âμm low-gain avalanche detectors at the Fermilab test beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 895, 158-172.	1.6	14
10	Readout electronics for LGAD sensors. Journal of Instrumentation, 2017, 12, C02069-C02069.	1.2	0
11	Beam test results of a 16 ps timing system based on ultra-fast silicon detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 850, 83-88.	1.6	120
12	Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 10 ¹⁵ n _{eq} /cm ² . Journal of Instrumentation, 2017, 12, P05003-P05003.	1.2	26
13	Ultra-fast silicon detectors (UFSD). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 831, 18-23.	1.6	84
14	Design and fabrication of an optimum peripheral region for low gain avalanche detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 821, 93-100.	1.6	29
15	Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 831, 24-28.	1.6	63
16	Technology developments and first measurements on inverse Low Gain Avalanche Detector (iLGAD) for high energy physics applications. Journal of Instrumentation, 2016, 11, C12039-C12039.	1.2	9
17	Compact Electrochemical Flow System for the Analysis of Environmental Pollutants. Electroanalysis, 2014, 26, 497-506.	2.9	11
18	Conservation of the Optical Properties of SRO after CMOS IC Processing. Procedia Technology, 2014, 17, 587-594	1.1	3

ANGEL MERLOS

#	Article	IF	CITATIONS
19	An impedimetric chemical sensor for determination of detergents residues. Talanta, 2013, 106, 286-292.	5.5	10
20	Design of a CMOS transducer interface for an UV silicon sensor. , 2010, , .		0
21	Characterisation of the interdigitated electrode array with tantalum silicide electrodes separated by insulating barriers. Electrochemistry Communications, 2008, 10, 1621-1624.	4.7	25
22	Three-dimensional interdigitated electrode array as a transducer for label-free biosensors. Biosensors and Bioelectronics, 2008, 24, 729-735.	10.1	51
23	Integrated Multisensor for FIA-Based Electronic Tongue Applications. IEEE Sensors Journal, 2008, 8, 608-615.	4.7	16
24	EIS-Capacitor-Based LC Wireless Chemical Sensors. , 2007, , .		2
25	High-Quality Factor Electrolyte Insulator Silicon Capacitor for Wireless Chemical Sensing. IEEE Electron Device Letters, 2007, 28, 27-29.	3.9	17
26	A wireless LC chemical sensor based on a high quality factor EIS capacitor. Sensors and Actuators B: Chemical, 2007, 126, 648-654.	7.8	24
27	Multi-sensor array used as an "electronic tongue―for mineral water analysis. Sensors and Actuators B: Chemical, 2006, 116, 130-134.	7.8	106
28	Effect of wall tilt on the optical properties of integrated directional couplers. Optics Letters, 2002, 27, 601.	3.3	4
29	Optimized technology for the fabrication of piezoresistive pressure sensors. Journal of Micromechanics and Microengineering, 2000, 10, 204-208.	2.6	32
30	lon-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors and Actuators B: Chemical, 1999, 57, 56-62.	7.8	291
31	Study of integrated RF passive components performed using CMOS and Si micromachining technologies. Journal of Micromechanics and Microengineering, 1997, 7, 162-164.	2.6	23
32	Electrochemical etching of porous silicon sacrificial layers for micromachining applications. Journal of Micromechanics and Microengineering, 1997, 7, 131-132.	2.6	12
33	Mechanical sensors integrated in a commercial CMOS technology. Sensors and Actuators A: Physical, 1997, 62, 698-704.	4.1	10
34	Microtechnologies for PH ISFET chemical sensors. Microelectronics Journal, 1997, 28, 389-405.	2.0	66
35	<title>Industrial microsystems on top of CMOS design and process</title> . , 1996, , .		0
36	Multilayer ISFET membranes for microsystems applications. Sensors and Actuators B: Chemical, 1996, 35, 136-140.	7.8	28

ANGEL MERLOS

#	Article	IF	CITATIONS
37	Bioceramics—simulated body fluid interfaces: pH and its influence of hydroxyapatite formation. Journal of Materials Science: Materials in Medicine, 1996, 7, 399-402.	3.6	72
38	Application of simple thioether ionophores to silver ion-selective CHEMFETs. Sensors and Actuators B: Chemical, 1995, 27, 321-324.	7.8	13
39	Application of nickel electroless plating to the fabrication of low-cost backside contact ISFETs. Sensors and Actuators B: Chemical, 1995, 27, 336-340.	7.8	14
40	New technology for easy and fully IC-compatible fabrication of backside-contacted ISFETs. Sensors and Actuators B: Chemical, 1995, 24, 228-231.	7.8	12
41	TMAH/IPA anisotropic etching characteristics. Sensors and Actuators A: Physical, 1993, 37-38, 737-743.	4.1	154
42	A study of the undercutting characteristics in the TMAH-IPA system. Journal of Micromechanics and Microengineering, 1992, 2, 181-183.	2.6	36
43	Influence of the degradation on the surface states and electrical characteristics of EOS structures. Surface Science, 1991, 251-252, 364-368.	1.9	11
44	Modelization and fabrication of ISFET based sensors. Microelectronic Engineering, 1991, 15, 423-426.	2.4	3
45	Flow-through pH-ISFET as detector in automated determinations. Electroanalysis, 1991, 3, 349-354.	2.9	12
46	pH-ISFET with NMOS technology. Electroanalysis, 1991, 3, 355-360.	2.9	23
47	Design kit for microsystems design for an enhanced CMOS process. , 0, , .		0