Chih-Lin Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121831/publications.pdf

Version: 2024-02-01

361296 276775 2,207 43 20 citations h-index papers

41 g-index 44 44 44 3024 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLoS ONE, 2010, 5, e15323.	1.1	287
2	Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 2017, 5, .	1.1	252
3	Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biology, 2013, 11, e1001682.	2.6	194
4	Global reductions in seafloor biomass in response to climate change. Global Change Biology, 2014, 20, 1861-1872.	4.2	155
5	Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 2020, 35, 292-314.	0.7	141
6	Global Carbon Cycling on a Heterogeneous Seafloor. Trends in Ecology and Evolution, 2018, 33, 96-105.	4.2	117
7	Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Marine Ecology - Progress Series, 2010, 399, 1-14.	0.9	116
8	Climateâ€induced changes in the suitable habitat of coldâ€water corals and commercially important deepâ€sea fishes in the North Atlantic. Global Change Biology, 2020, 26, 2181-2202.	4.2	109
9	Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regionalâ€scale ecosystems. Journal of Applied Ecology, 2012, 49, 670-679.	1.9	96
10	Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2699-2711.	0.6	70
11	Past and future decline of tropical pelagic biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12891-12896.	3.3	67
12	Climate change considerations are fundamental to management of deepâ€sea resource extraction. Global Change Biology, 2020, 26, 4664-4678.	4.2	65
13	Anthropogenic "Litter―and macrophyte detritus in the deep Northern Gulf of Mexico. Marine Pollution Bulletin, 2012, 64, 966-973.	2.3	63
14	Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Frontiers in Marine Science, 2020, 7, .	1.2	43
15	Phytoplankton along the coastal shelf of an oligotrophic hypersaline environment in a semi-enclosed marginal sea: Qatar (Arabian Gulf). Continental Shelf Research, 2013, 60, 1-16.	0.9	41
16	Biodiversity–ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150282.	1.8	35
17	Standing stocks and body size of deep-sea macrofauna: Predicting the baseline of 2010 Deepwater Horizon oil spill in the northern Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 69, 82-99.	0.6	31
18	Time Machine Biology: Cross-Timescale Integration of Ecology, Evolution, and Oceanography. Oceanography, 2020, 33, .	0.5	28

#	Article	IF	CITATIONS
19	Complex depth-related patterns in taxonomic and functional diversity of polychaetes in the Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 80, 66-77.	0.6	26
20	Environmental Heterogeneity Throughout the Clarion-Clipperton Zone and the Potential Representativity of the APEI Network. Frontiers in Marine Science, 2021, 8, .	1.2	26
21	Nestedness and species replacement along bathymetric gradients in the deep sea reflect productivity: a test with polychaete assemblages in the oligotrophic northâ€west Gulf of Mexico. Journal of Biogeography, 2017, 44, 548-555.	1.4	23
22	North Atlantic Gateway: Test bed of deepâ€sea macroecological patterns. Journal of Biogeography, 2019, 46, 2056-2066.	1.4	22
23	The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Scientific Data, 2020, 7, 206.	2.4	18
24	Productivity controls macrofauna diversity in the deep northern Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 143, 17-27.	0.6	16
25	Marine latitudinal diversity gradients, niche conservatism and out of the tropics and Arctic: Climatic sensitivity of small organisms. Journal of Biogeography, 2020, 47, 817-828.	1.4	16
26	Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 125, 147-160.	0.6	15
27	Steep redox gradient and biogeochemical cycling driven by deeply sourced fluids and gases in a terrestrial mud volcano. FEMS Microbiology Ecology, 2018, 94, .	1.3	13
28	The SCOC database, a large, open, and global database with sediment community oxygen consumption rates. Scientific Data, 2019, 6, 242.	2.4	13
29	Seafloor biodiversity of Canada's three oceans: Patterns, hotspots and potential drivers. Diversity and Distributions, 2020, 26, 226-241.	1.9	13
30	Dissolved oxygen and temperature best predict deep-sea fish community structure in the Gulf of California with climate change implications. Marine Ecology - Progress Series, 2020, 637, 159-180.	0.9	13
31	Macrobenthos in the central Arabian Gulf: a reflection of climate extremes and variability. Hydrobiologia, 2016, 770, 53-72.	1.0	11
32	Macrofauna bivalve diversity from the deep northern Gulf of Mexico. Ecological Research, 2020, 35, 343-361.	0.7	10
33	Ecosystem turnover in an urbanized subtropical seascape driven by climate and pollution. Anthropocene, 2021, 36, 100304.	1.6	10
34	Long-Term Observations of Epibenthic Fish Zonation in the Deep Northern Gulf of Mexico. PLoS ONE, 2012, 7, e46707.	1.1	10
35	Dongshaea marina gen. nov., sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3318-3325.	0.8	9
36	Faunal zonation of large epibenthic invertebrates off North Carolina revisited. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1830-1833.	0.6	8

CHIH-LIN WEI

#	Article	IF	CITATIONS
37	Benthic community history in the Changjiang (Yangtze River) mega-delta: Damming, urbanization, and environmental control. Paleobiology, 2019, 45, 469-483.	1.3	8
38	Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon. Frontiers in Marine Science, 2020, 7, .	1.2	7
39	Characteristics and renewal of zooplankton communities under extreme environmental stresses in the oligotrophic hypersaline Arabian Gulf. Progress in Oceanography, 2022, 201, 102643.	1.5	5
40	Benthic ostracod diversity and biogeography in an urbanized seascape. Marine Micropaleontology, 2022, 174, 102067.	0.5	4
41	Diversity and Zonation of Benthic Amphipod Crustaceans Affected by the Mississippi Submarine Canyon in the Northern Gulf of Mexico. Frontiers in Marine Science, 2022, 9, .	1.2	1
42	The dynamics of the coastal food webs in the Central Arabian Sea. Qscience Proceedings, 2015, 2015, 2.	0.0	0
43	Early diagenesis and carbon remineralization in young rift sediment of the Southern Okinawa Trough. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30, 633-647.	0.3	O