
K V Lakshmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212167/publications.pdf Version: 2024-02-01

KVLAKSHMI

#	Article	IF	CITATIONS
1	Heteronuclear decoupling in rotating solids. Journal of Chemical Physics, 1995, 103, 6951-6958.	1.2	2,064
2	Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 2017, 139, 5378-5386.	6.6	108
3	Role of Hydrogen in Defining the n-Type Character of BiVO ₄ Photoanodes. Chemistry of Materials, 2016, 28, 5761-5771.	3.2	104
4	Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific Reports, 2015, 5, 15718.	1.6	100
5	On the origin of photoluminescence in indium oxide octahedron structures. Applied Physics Letters, 2008, 92, .	1.5	91
6	Analysis of Dipolar and Exchange Interactions between Manganese and Tyrosine Z in the S2YZ• State of Acetate-Inhibited Photosystem II via EPR Spectral Simulations at X- and Q-Bands. Journal of Physical Chemistry B, 1998, 102, 8327-8335.	1.2	89
7	Tetraazacyclophanes by Palladium-Catalyzed Aromatic Amination. Geometrically Defined, Stable, High-Spin Diradicals. Organic Letters, 1999, 1, 2057-2060.	2.4	89
8	Q-Band EPR of the S2 State of Photosystem II Confirms an S= 5/2 Origin of the X-Band g= 4.1 Signal. Biophysical Journal, 2004, 87, 2885-2896.	0.2	74
9	Bidirectional Electron Transfer in Photosystem I:  Direct Evidence from High-Frequency Time-Resolved EPR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 11910-11911.	6.6	73
10	Dipolar Correlation NMR Spectroscopy of a Membrane Protein. Journal of the American Chemical Society, 1994, 116, 10178-10181.	6.6	62
11	Characterization of the Interaction between Manganese and Tyrosine Z in Acetate-Inhibited Photosystem II. Biochemistry, 1998, 37, 13594-13603.	1.2	60
12	Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes. Journal of the American Chemical Society, 2016, 138, 6484-6491.	6.6	54
13	Orientation of the Tetranuclear Manganese Cluster and Tyrosine Z in the O2-Evolving Complex of Photosystem II: An EPR Study of the S2YZ•State in Oriented Acetate-Inhibited Photosystem II Membranesâ€. Biochemistry, 1999, 38, 12758-12767.	1.2	53
14	Probing the Functional Role of Ca2+in the Oxygen-Evolving Complex of Photosystem II by Metal Ion Inhibitionâ€. Biochemistry, 2007, 46, 3211-3223.	1.2	51
15	Pulsed electron paramagnetic resonance methods for macromolecular structure determination. Current Opinion in Structural Biology, 2001, 11, 523-531.	2.6	50
16	Electronic Structure of the P700Special Pair from High-Frequency Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 8911-8916.	1.2	48
17	High-Field EPR Study of Carotenoid and Chlorophyll Cation Radicals in Photosystem II. Journal of Physical Chemistry B, 2000, 104, 10445-10448.	1.2	46
18	Internuclear distance measurement in a reaction intermediate: solid-state carbon-13 NMR rotational resonance determination of the Schiff base configuration in the M photointermediate of bacteriorhodopsin. Journal of the American Chemical Society, 1993, 115, 8515-8516.	6.6	45

K V Lakshmi

#	Article	IF	CITATIONS
19	Solid state NMR study of [epsilon-13C]Lys-bacteriorhodopsin: Schiff base photoisomerization. Biophysical Journal, 1993, 65, 310-315.	0.2	42
20	Stabilization of reactive Co ₄ O ₄ cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11630-11639.	3.3	41
21	Aqueous Spectroscopy and Redox Properties of Carboxylate-Bound Titanium. Inorganic Chemistry, 2006, 45, 1795-1804.	1.9	39
22	Solid State 13C and 15N NMR Investigations of the N Intermediate of Bacteriorhodopsin. Biochemistry, 1994, 33, 8853-8857.	1.2	35
23	Tuning the Wettability of Indium Oxide Nanowires from Superhydrophobic to Nearly Superhydrophilic: Effect of Oxygen-Related Defects. Journal of Physical Chemistry C, 2015, 119, 16026-16032.	1.5	33
24	Factors that determine the unusually low reduction potential of cytochrome c 550 in cyanobacterial photosystem II. Journal of Biological Inorganic Chemistry, 2001, 6, 708-716.	1.1	29
25	Pulsed High-Frequency EPR Study on the Location of Carotenoid and Chlorophyll Cation Radicals in Photosystem II. Journal of the American Chemical Society, 2003, 125, 5005-5014.	6.6	28
26	Correlation of the cytochrome c (550) content of cyanobacterial Photosystem II with the EPR properties of the oxygen-evolving complex. Photosynthesis Research, 2002, 72, 175-189.	1.6	27
27	Selective electrochemical reduction of CO ₂ to CO on CuO/In ₂ O ₃ nanocomposites: role of oxygen vacancies. Catalysis Science and Technology, 2019, 9, 5339-5349.	2.1	25
28	High-Resolution Two-Dimensional1H and14N Hyperfine Sublevel Correlation Spectroscopy of the Primary Quinone of Photosystem II. Biochemistry, 2011, 50, 491-501.	1.2	24
29	Isolation and characterization of the iron-binding properties of a primitive monolobal transferrin from Ciona intestinalis. Journal of Biological Inorganic Chemistry, 2008, 13, 873-885.	1.1	23
30	Ligand Environment of the S ₂ State of Photosystem II: A Study of the Hyperfine Interactions of the Tetranuclear Manganese Cluster by 2D ¹⁴ N HYSCORE Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 10905-10911.	1.2	22
31	The structure and activation of substrate water molecules in the S2 state of photosystem II studied by hyperfine sublevel correlation spectroscopy. Energy and Environmental Science, 2012, 5, 7747.	15.6	22
32	Is Deprotonation of the Oxygen-Evolving Complex of Photosystem II during the S ₁ → S ₂ Transition Suppressed by Proton Quantum Delocalization?. Journal of the American Chemical Society, 2021, 143, 8324-8332.	6.6	21
33	The Structure and Function of Quinones in Biological Solar Energy Transduction: A Cyclic Voltammetry, EPR, and Hyperfine Sub-Level Correlation (HYSCORE) Spectroscopy Study of Model Naphthoquinones. Journal of Physical Chemistry B, 2013, 117, 7210-7220.	1.2	20
34	Monomeric, Divalent Vanadium Bis(arylamido) Complexes: Linkage Isomerism and Reactivity. Organometallics, 2019, 38, 1648-1663.	1.1	20
35	Effect of Hydrogen Bond Strength on the Redox Properties of Phylloquinones: A Two-Dimensional Hyperfine Sublevel Correlation Spectroscopy Study of Photosystem I. Biochemistry, 2011, 50, 3495-3501.	1.2	19
36	The structure and activation of substrate water molecules in Sr ²⁺ -substituted photosystem II. Physical Chemistry Chemical Physics, 2014, 16, 20834-20843.	1.3	19

Κ V LAKSHMI

#	Article	IF	CITATIONS
37	Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Frontiers in Microbiology, 2021, 12, 735666.	1.5	19
38	Location of the Ironâ^'Sulfur Clusters FAand FBin Photosystem I:Â An Electron Paramagnetic Resonance Study of Spin Relaxation Enhancement of P700+â€. Biochemistry, 1999, 38, 13210-13215.	1.2	18
39	Structure and Function of Quinones in Biological Solar Energy Transduction: A Differential Pulse Voltammetry, EPR, and Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy Study of Model Benzoquinones. Journal of Physical Chemistry B, 2009, 113, 15409-15418.	1.2	18
40	Two-dimensional ⁶⁷ Zn HYSCORE spectroscopy reveals that a Zn-bacteriochlorophyll <i>a</i> _P ′ dimer is the primary donor (P ₈₄₀) in the type-1 reaction centers of <i>Chloracidobacterium thermophilum</i> . Physical Chemistry Chemical Physics, 2020, 22, 6457-6467.	1.3	17
41	Two-Dimensional ¹ H HYSCORE Spectroscopy of Dimanganese Di-μ-oxo Mimics of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2011, 115, 12220-12229.	1.2	16
42	High-Frequency Electron Nuclear Double-Resonance Spectroscopy Studies of the Mechanism of Proton-Coupled Electron Transfer at the Tyrosine-D Residue of Photosystem II. Biochemistry, 2013, 52, 4781-4790.	1.2	16
43	The role of stoichiometry of indium and oxygen on gas sensing properties of indium oxide nanostructures. Applied Physics Letters, 2010, 96, 123114.	1.5	13
44	A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. IScience, 2021, 24, 102719.	1.9	13
45	Investigating the role of hydrogen in indium oxide tubular nanostructures as a donor or oxygen vacancy passivation center. Applied Physics Letters, 2009, 95, 013102.	1.5	12
46	Electron Paramagnetic Resonance Distance Measurements in Photosystems. Biological Magnetic Resonance, 2002, , 513-567.	0.4	11
47	Two-dimensional 14N HYSCORE spectroscopy of the coordination geometry of ligands in dimanganese di-μ-oxo mimics of the oxygen evolving complex of photosystem II. Physical Chemistry Chemical Physics, 2012, 14, 7090.	1.3	10
48	Low-Temperature Turnover Control of Photosystem II Using Novel Metal-Containing Redox-Active Herbicides. Journal of the American Chemical Society, 2000, 122, 5180-5188.	6.6	9
49	The Assembly of a Multisubunit Photosynthetic Membrane Protein Complex: A Site-Specific Spin Labeling EPR Spectroscopic Study of the PsaC Subunit in Photosystem I. Biochemistry, 2010, 49, 2398-2408.	1.2	9
50	A Stable Sevenâ€Membered Heterocycle, Containing B, C, N, O, and P Atoms, inside a Smaragdyrin Macrocycle. Chemistry - A European Journal, 2015, 21, 11315-11319.	1.7	9
51	Redox-Initiated Reactivity of Dinuclear β-Diketiminatoniobium Imido Complexes. Inorganic Chemistry, 2017, 56, 1626-1637.	1.9	9
52	Two-Dimensional HYSCORE Spectroscopy of Superoxidized Manganese Catalase: A Model for the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2015, 119, 4905-4916.	1.2	8
53	Structure and Function of Quinones in Biological Solar Energy Transduction: A High-Frequency D-Band EPR Spectroscopy Study of Model Benzoquinones. Journal of Physical Chemistry B, 2012, 116, 676-682.	1.2	7
54	Synthesis and Quantum Mechanical Studies of a Highly Stable Ferrocene-Incorporated Expanded Porphyrin. Inorganic Chemistry, 2016, 55, 6873-6881.	1.9	6

K V Lakshmi

#	Article	IF	CITATIONS
55	Calixsmaragdyrin: A Versatile Ligand for Coordination Complexes. Inorganic Chemistry, 2017, 56, 3763-3772.	1.9	6
56	Mixed Boron(III) and Phosphorous(V) Complexes of <i>meso</i> â€Triaryl 25â€Oxasmaragdyrins. Chemistry - A European Journal, 2016, 22, 9699-9708.	1.7	5
57	Titanium Imido Complexes by Displacement of –SiMe ₃ and C–H Bond Activation in a Ti ^{III} Amido Complex, Promoted by a Cyclic (Alkyl)(Amino) Carbene (cAAC). European Journal of Inorganic Chemistry, 2017, 2017, 2484-2487.	1.0	5
58	A Dicopper Nitrenoid by Oxidation of a CulCul Core: Synthesis, Electronic Structure, and Reactivity. Journal of the American Chemical Society, 2021, 143, 7135-7143.	6.6	5
59	Two-dimensional HYSCORE spectroscopy reveals a histidine imidazole as the axial ligand to Chl3A in the M688HPsaA genetic variant of Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148424.	0.5	5
60	Construction of Novel Cyclic Tetrads by Axial Coordination of Thiaporphyrins to Tin(IV) Porphyrin. Inorganic Chemistry, 2017, 56, 13913-13929.	1.9	4
61	Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria. Faraday Discussions, 2022, 234, 195-213.	1.6	4
62	Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. Physical Chemistry Chemical Physics, 2019, 21, 8721-8728.	1.3	3
63	Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts, 2021, 11, 1068.	1.6	3
64	HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. IScience, 2020, 23, 101366.	1.9	2
65	Determining the Electronic Structure of Paramagnetic Intermediates in membrane proteins: A high-resolution 2D 1H hyperfine sublevel correlation study of the redox-active tyrosines of photosystem II. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183422.	1.4	2
66	The Radical Intermediates of Photosystem II. , 2014, , 299-320.		2
67	Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 548-556.	0.5	1
68	Foreword to: Biophysical studies of membrane systems and interactions - Commemorative issue in honour of Professor Michèle Auger. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183609.	1.4	0