
## Ricardo M Souto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121615/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Contributions of Microelectrochemical Scanning Techniques for the Efficient Detection of Localized<br>Corrosion Processes at the Cut Edges of Polymer-Coated Galvanized Steel. Molecules, 2022, 27, 2167.                                                | 3.8 | 3         |
| 2  | Development of an Al3+ ion-selective microelectrode for the potentiometric microelectrochemical<br>monitoring of corrosion sites on 2098â^T351 aluminum alloy surfaces. Electrochimica Acta, 2022, 415,<br>140260.                                       | 5.2 | 6         |
| 3  | Uses of Scanning Electrochemical Microscopy (SECM) for the Characterization with Spatial and Chemical Resolution of Thin Surface Layers and Coating Systems Applied on Metals: A Review. Coatings, 2022, 12, 637.                                        | 2.6 | 13        |
| 4  | Electrochemical characterization of alloy segregation in the near-surface deformed layer of welded zones of an Alâ^'Cuâ^'Li alloy using scanning electrochemical microscopy. Electrochimica Acta, 2022, 427, 140873.                                     | 5.2 | 3         |
| 5  | Surface finishing effects on the corrosion behavior and electrochemical activity of 2098-T351 aluminum alloy investigated using scanning microelectrochemical techniques. Materials Characterization, 2022, 191, 112130.                                 | 4.4 | 4         |
| 6  | Do titanium biomaterials get immediately and entirely repassivated? A perspective. Npj Materials<br>Degradation, 2022, 6, .                                                                                                                              | 5.8 | 9         |
| 7  | Use of alumina sludge arising from an electrocoagulation process as functional mesoporous<br>microcapsules for active corrosion protection of aluminum. Progress in Organic Coatings, 2021, 151,<br>106044.                                              | 3.9 | 3         |
| 8  | Evaluation of in vitro corrosion resistance and in vivo osseointegration properties of a FeMnSiCa<br>alloy as potential degradable implant biomaterial. Materials Science and Engineering C, 2021, 118, 111436.                                          | 7.3 | 19        |
| 9  | Use of Amperometric and Potentiometric Probes in Scanning Electrochemical Microscopy for the Spatially-Resolved Monitoring of Severe Localized Corrosion Sites on Aluminum Alloy 2098-T351. Sensors, 2021, 21, 1132.                                     | 3.8 | 8         |
| 10 | On the local corrosion behavior of coupled welded zones of the 2098-T351 Al-Cu-Li alloy produced by Friction Stir Welding (FSW): An amperometric and potentiometric microelectrochemical investigation. Electrochimica Acta, 2021, 373, 137910.          | 5.2 | 11        |
| 11 | Investigation of anomalous hydrogen evolution from anodized magnesium using a polarization<br>routine for scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2021, 895,<br>115538.                                             | 3.8 | 4         |
| 12 | In Situ Investigation of the Cytotoxic and Interfacial Characteristics of Titanium When Galvanically<br>Coupled with Magnesium Using Scanning Electrochemical Microscopy. ACS Applied Materials &<br>Interfaces, 2021, 13, 43587-43596.                  | 8.0 | 9         |
| 13 | Experimental characterization, machine learning analysis and computational modelling of the high effective inhibition of copper corrosion by 5â€(4â€pyridyl)â€1,3,4â€oxadiazoleâ€2â€thiol in saline environment. Electrochimica Acta, 2021, 398, 139282. | 5.2 | 25        |
| 14 | New insights on the influence of aluminum on the anomalous hydrogen evolution of anodized magnesium using scanning electrochemical microscopy. Electrochimica Acta, 2021, 391, 138915.                                                                   | 5.2 | 7         |
| 15 | Spectroelectrochemical Behavior of Polycrystalline Gold Electrode Modified by Reverse Micelles.<br>Molecules, 2021, 26, 471.                                                                                                                             | 3.8 | 1         |
| 16 | New Ti-6Al-2Nb-2Ta-1Mo alloy as implant biomaterial: In vitro corrosion and in vivo osseointegration evaluations. Materials Chemistry and Physics, 2020, 240, 122229.                                                                                    | 4.0 | 16        |
| 17 | A novel scanning electrochemical microscopy strategy for the investigation of anomalous hydrogen evolution from AZ63 magnesium alloy. Sensors and Actuators B: Chemical, 2020, 308, 127691.                                                              | 7.8 | 19        |
| 18 | Multiscale electrochemical analysis of the corrosion control of bronze in simulated acid rain by<br>horse-chestnut (Aesculus hippocastanum L.) extract as green inhibitor. Corrosion Science, 2020, 165,<br>108381.                                      | 6.6 | 41        |

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | REMOVED: In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys. Materials Science and Engineering C, 2020, 108, 110485.                                                                           | 7.3 | 6         |
| 20 | Galvanic coupling effects on the corrosion behavior of the 6061 aluminum alloy used in research nuclear reactors. Journal of Nuclear Materials, 2020, 541, 152440.                                                                                                         | 2.7 | 12        |
| 21 | A scanning electrochemical microscopy characterization of the localized corrosion reactions occurring on nitinol in saline solution after anodic polarization. Sensors and Actuators B: Chemical, 2020, 321, 128610.                                                       | 7.8 | 21        |
| 22 | Surface chemistry, film morphology, local electrochemical behavior and cytotoxic response of<br>anodized AZ31B magnesium alloy. Journal of Materials Research and Technology, 2020, 9, 14754-14770.                                                                        | 5.8 | 17        |
| 23 | A study of the electrochemical reactivity of titanium under cathodic polarization by means of combined feedback and redox competition modes of scanning electrochemical microscopy. Sensors and Actuators B: Chemical, 2020, 320, 128339.                                  | 7.8 | 15        |
| 24 | The Influence of Test-Panel Orientation and Exposure Angle on the Corrosion Rate of Carbon Steel.<br>Mathematical Modelling. Metals, 2020, 10, 196.                                                                                                                        | 2.3 | 5         |
| 25 | Improvement of the Corrosion Resistance of Biomedical Zr-Ti Alloys Using a Thermal Oxidation Treatment. Metals, 2020, 10, 166.                                                                                                                                             | 2.3 | 4         |
| 26 | Shortcomings of International Standard ISO 9223 for the Classification, Determination, and<br>Estimation of Atmosphere Corrosivities in Subtropical Archipelagic Conditions—The Case of the<br>Canary Islands (Spain). Metals, 2019, 9, 1105.                              | 2.3 | 7         |
| 27 | Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases. Corrosion Science, 2019, 160, 108130.                                                                                                             | 6.6 | 59        |
| 28 | Fluoride removal from natural volcanic underground water by an electrocoagulation process:<br>Parametric and cost evaluations. Journal of Environmental Management, 2019, 246, 472-483.                                                                                    | 7.8 | 48        |
| 29 | Design and optimization of an electrocoagulation reactor for fluoride remediation in underground water sources for human consumption. Journal of Water Process Engineering, 2019, 31, 100865.                                                                              | 5.6 | 28        |
| 30 | Multi-barrel electrodes containing an internal micro-reference for the improved visualization of galvanic corrosion processes in magnesium-based materials using potentiometric scanning electrochemical microscopy. Sensors and Actuators B: Chemical, 2019, 296, 126625. | 7.8 | 17        |
| 31 | Groundwater Quality Assessment in a Volcanic Mountain Range (South of Gran Canaria Island, Spain).<br>Water (Switzerland), 2019, 11, 754.                                                                                                                                  | 2.7 | 11        |
| 32 | Osseointegration evaluation of ZrTi alloys with hydroxyapatite-zirconia-silver layer in pig's tibiae.<br>Applied Surface Science, 2019, 487, 127-137.                                                                                                                      | 6.1 | 14        |
| 33 | Fitting procedure based on Differential Evolution to evaluate impedance parameters of metal–coating systems. Engineering Computations, 2019, 36, 2960-2982.                                                                                                                | 1.4 | 7         |
| 34 | Potentiometric Tip Electrodes for Improved Visualization of Galvanic Corrosion Processes Using SECM. ECS Meeting Abstracts, 2019, , .                                                                                                                                      | 0.0 | 0         |
| 35 | Synthesis and Evaluation of Anionic Schiff Bases As Pitting Corrosion Inhibitor for Stainless Steel 304 in NaCl Solution. ECS Meeting Abstracts, 2019, MA2019-01, 998-998.                                                                                                 | 0.0 | 1         |
| 36 | Chemical Imaging of Reactive Surfaces Using Microsensors As Tips in Scanning Electrochemical Microscopy: Applications in Corrosion Research and Protection. ECS Meeting Abstracts, 2019, , .                                                                               | 0.0 | 0         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Inhibitive effect of sodium (E)-4-(4-nitrobenzylideneamino)benzoate on the corrosion of some metals<br>in sodium chloride solution. Applied Surface Science, 2018, 447, 852-865.                                                           | 6.1 | 37        |
| 38 | Double Barrel Microelectrode Assembly to Prevent Electrical Field Effects in Potentiometric SECM<br>Imaging of Galvanic Corrosion Processes. Journal of the Electrochemical Society, 2018, 165, C270-C277.                                 | 2.9 | 16        |
| 39 | Investigating metalâ€inhibitor interaction with EQCM and SVET: 3â€aminoâ€1,2,4â€triazole on Au, Cu and<br>Au–Cu galvanic coupling. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 115-124.                                  | 1.5 | 2         |
| 40 | Evaluation of the Corrosion of AZ31 Magnesium Alloy Used as Sacrificial Anode for Cathodic<br>Protection of Hot-Water Tank Storage Containing Chloride. International Journal of Electrochemical<br>Science, 2018, 13, 29-44.              | 1.3 | 13        |
| 41 | SECM study of the pH distribution over Cu samples treated with 2-mercaptobenzothiazole in NaCl solution. Electrochemistry Communications, 2017, 78, 60-63.                                                                                 | 4.7 | 15        |
| 42 | The effect of electric field on potentiometric Scanning Electrochemical Microscopic imaging.<br>Electrochemistry Communications, 2017, 77, 138-141.                                                                                        | 4.7 | 18        |
| 43 | Improved potentiometric SECM imaging of galvanic corrosion reactions. Corrosion Science, 2017, 129, 136-145.                                                                                                                               | 6.6 | 26        |
| 44 | Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods. Electrochimica Acta, 2017, 248, 368-375.                                           | 5.2 | 30        |
| 45 | Propolis as a green corrosion inhibitor for bronze in weakly acidic solution. Applied Surface Science, 2017, 426, 1100-1112.                                                                                                               | 6.1 | 65        |
| 46 | In situ investigation of copper corrosion in acidic chloride solution using atomic force—scanning<br>electrochemical microscopy. Electrochimica Acta, 2017, 247, 588-599.                                                                  | 5.2 | 26        |
| 47 | Novel dual microelectrode probe for the simultaneous visualization of local Zn2+ and pH distributions in galvanic corrosion processes. Corrosion Science, 2017, 114, 37-44.                                                                | 6.6 | 22        |
| 48 | Electrochemical Studies on the Stability and Corrosion Resistance of Two Austenitic Stainless Steels for Soft Drinks Containers. International Journal of Electrochemical Science, 2017, 12, 5438-5449.                                    | 1.3 | 3         |
| 49 | SVET study of the interaction of 2-mercaptobenzothiazole corrosion inhibitor with Au, Cu and Au–Cu<br>galvanic pair. International Journal of Corrosion and Scale Inhibition, 2017, 6, .                                                   | 0.6 | 0         |
| 50 | Electrochemical Investigation of the Corrosion Resistance of Ti20Mo Alloys in Simulated<br>Physiological Solution with Added Proteins for Biomaterial Application. International Journal of<br>Electrochemical Science, 2016, , 6922-6932. | 1.3 | 4         |
| 51 | Kinetic Passivation Effect of Localized Differential Aeration on Brass. ChemPlusChem, 2016, 81, 49-57.                                                                                                                                     | 2.8 | 4         |
| 52 | Kinetic Passivation Effect of Localized Differential Aeration on Brass. ChemPlusChem, 2016, 81, 2-2.                                                                                                                                       | 2.8 | 0         |
| 53 | Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia-silver layer in simulated<br>physiological solution containing proteins for biomaterial applications. Applied Surface Science, 2016,<br>389, 1069-1075.                   | 6.1 | 15        |
| 54 | Imaging of Concentration Distributions and Hydrogen Evolution on Corroding Magnesium Exposed to<br>Aqueous Environments Using Scanning Electrochemical Microscopy. Electroanalysis, 2016, 28,<br>2354-2366.                                | 2.9 | 24        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Combined amperometric/potentiometric probes for improved chemical imaging of corroding surfaces using Scanning Electrochemical Microscopy. Electrochimica Acta, 2016, 221, 48-55.                                                             | 5.2 | 16        |
| 56 | Scanning electrochemical microscopy characterization of sol-gel coatings applied on AA2024-T3 substrate for corrosion protection. Corrosion Science, 2016, 111, 625-636.                                                                      | 6.6 | 35        |
| 57 | Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on<br>Ti-21Nb-15Ta-6Zr alloy for biomedical application. Applied Surface Science, 2016, 385, 368-378.                                               | 6.1 | 28        |
| 58 | SIMULTANEOUS ATOMIC FORCEâ€"SCANNING ELECTROCHEMICAL MICROSCOPY (AFM-SECM) IMAGING OF COPPER DISSOLUTION. Electrochimica Acta, 2016, 201, 320-332.                                                                                            | 5.2 | 24        |
| 59 | Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution. Materials Science and Engineering C, 2016, 60, 402-410.                 | 7.3 | 48        |
| 60 | Multiscale electrochemical analysis of the corrosion of titanium and nitinol for implant applications. Electrochimica Acta, 2016, 203, 366-378.                                                                                               | 5.2 | 31        |
| 61 | Mapping of Local Corrosion Behavior of Zinc in Substitute Ocean Water at Its Initial Stages by SVET.<br>International Journal of Electrochemical Science, 2016, 11, 5256-5266.                                                                | 1.3 | 9         |
| 62 | Inâ€Situ Monitoring of Pit Nucleation and Growth at an Iron Passive Oxide Layer by using Combined<br>Atomic Force and Scanning Electrochemical Microscopy. ChemElectroChem, 2015, 2, 1847-1856.                                               | 3.4 | 14        |
| 63 | Characterization of the Corrosive Action of Mineral Waters from Thermal Sources: A Case Study at<br>Azores Archipelago, Portugal. Water (Switzerland), 2015, 7, 3515-3530.                                                                    | 2.7 | 11        |
| 64 | Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions.<br>Corrosion Science, 2015, 98, 170-179.                                                                                                 | 6.6 | 15        |
| 65 | Multiscale Electrochemical Investigation of the Corrosion Resistance of Various Alloys Used in<br>Dental Prostheses. Metallurgical and Materials Transactions B: Process Metallurgy and Materials<br>Processing Science, 2015, 46, 1011-1021. | 2.1 | 5         |
| 66 | Possibilities and Limitations of Scanning Electrochemical Microscopy of Mg and Mg Alloys.<br>Corrosion, 2015, 71, 171-183.                                                                                                                    | 1.1 | 37        |
| 67 | Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel. International<br>Journal of Materials Research, 2015, 106, 267-274.                                                                                     | 0.3 | 4         |
| 68 | Evaluation of the corrosion protection of steel by anodic processing in metasilicate solution using the scanning vibrating electrode technique. Electrochimica Acta, 2015, 178, 1-10.                                                         | 5.2 | 15        |
| 69 | SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochimica Acta, 2015, 153, 238-245.                                                                                                                      | 5.2 | 30        |
| 70 | Simultaneous pit generation and visualization of pit topography using combined atomic<br>force–scanning electrochemical microscopy. Electrochemistry Communications, 2015, 51, 15-18.                                                         | 4.7 | 16        |
| 71 | Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions. Corrosion Science, 2015, 90, 522-528.                                                                                  | 6.6 | 96        |
| 72 | Scanning electrochemical microscopy studies for the characterization of localized corrosion reactions at cut edges of coil-coated steel. Journal of Solid State Electrochemistry, 2014, 18, 2983-2992.                                        | 2.5 | 28        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Characterisation of localised corrosion processes using scanning electrochemical impedance microscopy. Electrochemistry Communications, 2014, 44, 38-41.                                                                             | 4.7 | 28        |
| 74 | Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution.<br>Electrochimica Acta, 2014, 137, 280-289.                                                                                                   | 5.2 | 92        |
| 75 | Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution. Journal of Electroanalytical Chemistry, 2014, 728, 148-157.                     | 3.8 | 35        |
| 76 | Effect of acidic fluoride solution on the corrosion resistance of ZrTi alloys for dental implant application. Corrosion Science, 2014, 87, 334-343.                                                                                  | 6.6 | 37        |
| 77 | In situ monitoring of the electrochemical reactivity of aluminium alloy AA6060 using the scanning vibrating electrode technique. Journal of Electroanalytical Chemistry, 2014, 732, 74-79.                                           | 3.8 | 4         |
| 78 | Imaging Local Surface Reactivity on Stainless Steels 304 and 316 in Acid Chloride Solution using<br>Scanning Electrochemical Microscopy and the Scanning Vibrating Electrode Technique.<br>Electrochimica Acta, 2014, 134, 167-175.  | 5.2 | 28        |
| 79 | Electrochemical behaviour of ZrTi alloys in artificial physiological solution simulating in vitro inflammatory conditions. Applied Surface Science, 2014, 313, 259-266.                                                              | 6.1 | 28        |
| 80 | Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions.<br>Electrochimica Acta, 2013, 113, 470-480.                                                                                      | 5.2 | 65        |
| 81 | Development of Mg <sup>2+</sup> Ion-Selective Microelectrodes for Potentiometric Scanning<br>Electrochemical Microscopy Monitoring of Galvanic Corrosion Processes. Journal of the<br>Electrochemical Society, 2013, 160, C451-C459. | 2.9 | 49        |
| 82 | Potentiometric scanning electrochemical microscopy for the local characterization of the electrochemical behaviour of magnesium-based materials. Electrochimica Acta, 2013, 87, 283-293.                                             | 5.2 | 51        |
| 83 | Electrochemical characterization of ZrTi alloys for biomedical applications. Electrochimica Acta, 2013, 88, 447-456.                                                                                                                 | 5.2 | 77        |
| 84 | Resolution of the apparent experimental discrepancies observed between SVET and SECM for the characterization of galvanic corrosion reactions. Electrochemistry Communications, 2013, 27, 50-53.                                     | 4.7 | 36        |
| 85 | Spatially-resolved imaging of concentration distributions on corroding magnesium-based materials exposed to aqueous environments by SECM. Electrochemistry Communications, 2013, 26, 25-28.                                          | 4.7 | 47        |
| 86 | Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation. Electrochimica Acta, 2013, 106, 432-439.                                                                       | 5.2 | 29        |
| 87 | Investigation of Mg/Al alloy sacrificial anode corrosion with Scanning Electrochemical Microscopy.<br>Periodica Polytechnica: Chemical Engineering, 2013, 57, 11.                                                                    | 1.1 | 3         |
| 88 | (Invited) Investigation of Early Degradation Processes at Coated Metals by AC-Scanning<br>Electrochemical Microscopy. ECS Transactions, 2012, 41, 29-38.                                                                             | 0.5 | 1         |
| 89 | Local Electrochemical Impedance Spectroscopy Investigation of Corrosion Inhibitor Films on Copper.<br>ECS Transactions, 2012, 41, 227-235.                                                                                           | 0.5 | 5         |
| 90 | On the use of mercury-coated tips in scanning electrochemical microscopy to investigate galvanic corrosion processes involving zinc and iron. Corrosion Science, 2012, 55, 401-406.                                                  | 6.6 | 25        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Investigation of Copper Corrosion Inhibition with Frequencyâ€Đependent Alternatingâ€Current Scanning<br>Electrochemical Microscopy. ChemPlusChem, 2012, 77, 707-712.                                                                                                                                                                                                                      | 2.8 | 17        |
| 92  | Scanning electrochemical microscopy for the investigation of corrosion processes: Measurement of Zn2+ spatial distribution with ion selective microelectrodes. Electrochimica Acta, 2012, 59, 398-403.                                                                                                                                                                                    | 5.2 | 36        |
| 93  | Direct evidence of early blister formation in polymer-coated metals from exposure to<br>chloride-containing electrolytes by alternating-current scanning electrochemical microscopy.<br>Electrochimica Acta, 2012, 77, 60-64.                                                                                                                                                             | 5.2 | 17        |
| 94  | Sensing polymer inhomogeneity in coated metals during the early stages of coating degradation.<br>Progress in Organic Coatings, 2012, 74, 365-370.                                                                                                                                                                                                                                        | 3.9 | 10        |
| 95  | New opportunities for the study of organic films applied on metals for corrosion protection by<br>means of alternating current scanning electrochemical microscopy. Progress in Organic Coatings,<br>2012, 74, 371-375.                                                                                                                                                                   | 3.9 | 6         |
| 96  | Scanning microelectrochemical characterization of the anti-corrosion performance of inhibitor films formed by 2-mercaptobenzimidazole on copper. Progress in Organic Coatings, 2012, 74, 526-533.                                                                                                                                                                                         | 3.9 | 50        |
| 97  | In Situ Scanning Electrochemical Microscopy (SECM) Detection of Metal Dissolution during Zinc<br>Corrosion by Means of Mercury Sphere ap Microelectrode Tips. Chemistry - A European Journal, 2012,<br>18, 230-236.                                                                                                                                                                       | 3.3 | 38        |
| 98  | FTIR Characterization of Surface Interactions of Cyanide and Copper Cyanide with a Platinum Electrode in Alkaline Solution. Journal of Physical Chemistry C, 2011, 115, 3671-3677.                                                                                                                                                                                                        | 3.1 | 12        |
| 99  | Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals: Effect of oxygen. Corrosion Science, 2011, 53, 1910-1915.                                                                                                                                                                                                                  | 6.6 | 39        |
| 100 | Sensing electrochemical activity in polymer coated metals during the early stages of coating degradation–Effect of the polarization of the substrate. Electrochimica Acta, 2011, 56, 9596-9601.                                                                                                                                                                                           | 5.2 | 18        |
| 101 | Spatially resolved measurement of electrochemical activity and pH distributions in corrosion processes by scanning electrochemical microscopy using antimony microelectrode tips. Electrochimica Acta, 2011, 56, 8846-8850.                                                                                                                                                               | 5.2 | 64        |
| 102 | A novel microelectrochemical strategy for the study of corrosion inhibitors employing the scanning vibrating electrode technique and dual potentiometric/amperometric operation in scanning electrochemical microscopy: Application to the study of the cathodic inhibition by benzotriazole of the galvanic corrosion of copper coupled to iron. Electrochimica Acta, 2011, 58, 707-716. | 5.2 | 44        |
| 103 | Application of AC‧ECM in Corrosion Science: Local Visualisation of Inhibitor Films on Active Metals for Corrosion Protection. Chemistry - A European Journal, 2011, 17, 905-911.                                                                                                                                                                                                          | 3.3 | 37        |
| 104 | Development of Solid Contact Micropipette Zn-Ion Selective Electrode for Corrosion Studies.<br>Analytical Letters, 2011, 44, 2876-2886.                                                                                                                                                                                                                                                   | 1.8 | 17        |
| 105 | Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode. Electrochimica Acta, 2010, 55, 4488-4494.                                                                                                                                                                                                    | 5.2 | 63        |
| 106 | Self-healing processes in coil-coated cladding studied by the scanning vibrating electrode.<br>Electrochimica Acta, 2010, 55, 4551-4557.                                                                                                                                                                                                                                                  | 5.2 | 20        |
| 107 | Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals: The protection of copper surfaces by benzotriazole. Electrochimica Acta, 2010, 55, 8791-8800.                                                                                                                                                                            | 5.2 | 67        |
| 108 | Resistance of metallic substrates protected by an organic coating containing glass flakes. Progress in<br>Organic Coatings, 2010, 68, 240-243.                                                                                                                                                                                                                                            | 3.9 | 59        |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals. Progress in Organic Coatings, 2010, 69, 110-117.                                                                  | 3.9  | 45        |
| 110 | Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: Revealing the early stages of coating breakdown in corrosive environments. Corrosion Science, 2010, 52, 748-753. | 6.6  | 88        |
| 111 | Sensing electrochemical activity in polymer-coated metals during the early stages of coating<br>degradation by means of the scanning vibrating electrode technique. Corrosion Science, 2010, 52,<br>3924-3931.                   | 6.6  | 16        |
| 112 | Characterization of coating systems by scanning electrochemical microscopy: Surface topology and blistering. Progress in Organic Coatings, 2009, 65, 435-439.                                                                    | 3.9  | 46        |
| 113 | SECM Imaging of Interfacial Processes in Defective Organic Coatings Applied on Metallic Substrates<br>Using Oxygen as Redox Mediator. Electroanalysis, 2009, 21, 2640-2646.                                                      | 2.9  | 47        |
| 114 | Imaging the Origins of Coating Degradation and Blistering Caused by Electrolyte Immersion Assisted by SECM. Electroanalysis, 2009, 21, 2569-2574.                                                                                | 2.9  | 32        |
| 115 | Evaluation of the corrosion performance of coil-coated steel sheet as studied by scanning electrochemical microscopy. Corrosion Science, 2008, 50, 1637-1643.                                                                    | 6.6  | 50        |
| 116 | Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corrosion Science, 2007, 49, 726-739.                                                                                                                 | 6.6  | 167       |
| 117 | Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corrosion Science, 2007, 49, 3514-3526.                                                                        | 6.6  | 181       |
| 118 | Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron. Corrosion Science, 2007, 49, 4568-4580.                                                            | 6.6  | 96        |
| 119 | Electroless, Electrolytic and Galvanic Copper Deposition with the Scanning Electrochemical Microscope (SECM). Zeitschrift Fur Physikalische Chemie, 2006, 220, 393-406.                                                          | 2.8  | 15        |
| 120 | Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels.<br>Corrosion Science, 2006, 48, 1182-1192.                                                                                       | 6.6  | 38        |
| 121 | Characterization of the catalytic films formed on stainless steel anodes employed for the electrochemical treatment of cuprocyanide wastewaters. Journal of Hazardous Materials, 2005, 119, 145-152.                             | 12.4 | 11        |
| 122 | Hydrodynamic effects on the performance of an electrochemical reactor for destruction of copper<br>cyanide. Part 2—reactor kinetics and current efficiencies. Chemical Engineering Science, 2005, 60,<br>535-543.                | 3.8  | 17        |
| 123 | Hydrodynamic effects on the performance of an electrochemical reactor for destruction of copper cyanide—Part 1: in situ formation of the electrocatalytic film. Chemical Engineering Science, 2005, 60, 523-533.                 | 3.8  | 22        |
| 124 | The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution. Biomaterials, 2005, 26, 245-256.                                                                                   | 11.4 | 174       |
| 125 | Cathodic delamination of coil coatings produced with different Zn-based intermediate metallic layers. Progress in Organic Coatings, 2005, 53, 63-70.                                                                             | 3.9  | 21        |
| 126 | Accelerated tests for the evaluation of the corrosion performance of coil-coated steel sheet: EIS under cathodic polarisation. Progress in Organic Coatings, 2005, 53, 71-76.                                                    | 3.9  | 13        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Application of the scanning electrochemical microscope to the examination of organic coatings on metallic substrates. Progress in Organic Coatings, 2005, 53, 177-182.                                                            | 3.9  | 66        |
| 128 | Revealing Structural Effects, Part II: The Influence of Molecular Structure on the Adsorption of Butanol Isomers on Platinum. Chemistry - A European Journal, 2005, 11, 3309-3317.                                                | 3.3  | 7         |
| 129 | Coil-coated steel: corrosion resistance and adhesion as a function of the composition of the intermediate galvanic layer. Journal of Adhesion Science and Technology, 2005, 19, 1141-1155.                                        | 2.6  | 9         |
| 130 | In situ monitoring of electroactive species by using the scanning electrochemical microscope.<br>Application to the investigation of degradation processes at defective coated metals. Corrosion<br>Science, 2005, 47, 3312-3323. | 6.6  | 77        |
| 131 | Origins of pitting corrosion. Corrosion Engineering Science and Technology, 2004, 39, 25-30.                                                                                                                                      | 1.4  | 307       |
| 132 | Electrochemical behavior of different preparations of plasma-sprayed hydroxyapatite coatings on<br>Ti6Al4V substrate. Journal of Biomedical Materials Research Part B, 2004, 70A, 59-65.                                          | 3.1  | 14        |
| 133 | Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope. Electrochemistry Communications, 2004, 6, 1212-1215.                                     | 4.7  | 96        |
| 134 | Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential.<br>Electrochemistry Communications, 2004, 6, 637-642.                                                                      | 4.7  | 126       |
| 135 | Laboratory evaluation of corrosion resistance at metallic substrates by an organic coating:<br>delamination effects. Journal of Adhesion Science and Technology, 2004, 18, 455-464.                                               | 2.6  | 9         |
| 136 | Improvement in Pitting Resistance of Stainless Steel Surfaces by Prior Anodic Treatment in Metasilicate Solution. Journal of the Electrochemical Society, 2004, 151, B537.                                                        | 2.9  | 23        |
| 137 | Damage to paint coatings caused by electrolyte immersion as observed in situ by scanning electrochemical microscopy. Corrosion Science, 2004, 46, 2621-2628.                                                                      | 6.6  | 81        |
| 138 | Resistance of metallic substrates protected by an organic coating containing aluminum powder.<br>Progress in Organic Coatings, 2003, 46, 317-323.                                                                                 | 3.9  | 54        |
| 139 | Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials, 2003, 24, 4213-4221.                           | 11.4 | 162       |
| 140 | Revealing Structural Effects: Electrochemical Reactions of Butanols on Platinum. Chemistry - A<br>European Journal, 2002, 8, 2134.                                                                                                | 3.3  | 6         |
| 141 | Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating. Progress in Organic Coatings, 2001, 41, 167-170.                                                                                      | 3.9  | 39        |
| 142 | Investigation of the corrosion resistance characteristics of pigments in alkyd coatings on steel.<br>Progress in Organic Coatings, 2001, 43, 282-285.                                                                             | 3.9  | 48        |
| 143 | Investigation of the electrochemical reactivity of benzyl alcohol at platinum and palladium electrodes. Electrochimica Acta, 2000, 45, 1645-1653.                                                                                 | 5.2  | 20        |
| 144 | Electrochemical reactions of benzoic acid on platinum and palladium studied by DEMS. Comparison with benzyl alcohol. Journal of Electroanalytical Chemistry, 2000, 494, 127-135.                                                  | 3.8  | 22        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Chromate-Free Zinc Conversion Coatings Characterised by Grazing Incidence X-Ray Diffractometry.<br>Mikrochimica Acta, 2000, 133, 137-142.                                                                                                                             | 5.0 | 6         |
| 146 | Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corrosion Science, 2000, 42, 2201-2211.                                                                                                                                                  | 6.6 | 86        |
| 147 | Electrochemical impedance spectroscopy investigation of the corrosion at metallic substrates covered by organic coatings. Journal of Adhesion Science and Technology, 2000, 14, 1321-1330.                                                                            | 2.6 | 25        |
| 148 | Spectroscopic Investigation of the Adsorbates of Benzyl Alcohol on Palladium. Langmuir, 2000, 16, 8456-8462.                                                                                                                                                          | 3.5 | 19        |
| 149 | DEMS study on the adsorption and reactivity of benzyl alcohol on palladium and platinum.<br>Electrochimica Acta, 1998, 44, 1415-1422.                                                                                                                                 | 5.2 | 21        |
| 150 | Electrochemical study of the interaction of thiourea with copper electrodes in alkaline aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2725-2729.                                                                                 | 1.7 | 2         |
| 151 | Some experiments regarding the corrosion inhibition of copper by benzotriazole and potassium ethyl xanthate. Journal of Electroanalytical Chemistry, 1996, 411, 161-165.                                                                                              | 3.8 | 28        |
| 152 | A preliminary investigation into the microscopic depassivation of passive titanium implant materials in vitro. Journal of Materials Science: Materials in Medicine, 1996, 7, 337-343.                                                                                 | 3.6 | 55        |
| 153 | Observations of localised instability of passive titanium in chloride solution. Electrochimica Acta, 1995, 40, 1881-1888.                                                                                                                                             | 5.2 | 112       |
| 154 | Kinetics of copper passivation and pitting corrosion in Na2SO4 containing dilute NaOH aqueous solution. Electrochimica Acta, 1994, 39, 2619-2628.                                                                                                                     | 5.2 | 46        |
| 155 | Electronic configurations in potentiostats for the correction of ohmic losses. Electroanalysis, 1994, 6, 531-542.                                                                                                                                                     | 2.9 | 15        |
| 156 | The electrochemical faceting of copper in 85% aqueous o-phosphoric acid by using a potential reversal technique. Applied Surface Science, 1994, 81, 387-398.                                                                                                          | 6.1 | 9         |
| 157 | A mechanistic approach to the electroformation of anodic layers on copper and their<br>electroreduction in aqueous solutions containing NaHCO3 and Na2CO3. Electrochimica Acta, 1993, 38,<br>703-715.                                                                 | 5.2 | 20        |
| 158 | The kinetics of pitting corrosion of copper in alkaline solutions containing sodium perchlorate.<br>Electrochimica Acta, 1992, 37, 1437-1443.                                                                                                                         | 5.2 | 36        |
| 159 | Pitting corrosion of polycrystalline annealed copper in alkaline sodium perchlorate solutions containing benzotriazole. Journal of Applied Electrochemistry, 1992, 22, 1129-1134.                                                                                     | 2.9 | 9         |
| 160 | Electrochemical behaviour of copper in aqueous moderate alkaline media, containing sodium carbonate and bicarbonate, and sodium perchlorate. Electrochimica Acta, 1990, 35, 1337-1343.                                                                                | 5.2 | 77        |
| 161 | Induced reactant adsorption accompanying the reduction of cadmium(II) ions from 1 M KF solutions containing thiourea at elevated concentrations: an ac admittance study. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 264, 195-215. | 0.1 | 10        |
| 162 | The reaction pathway of the Cd(II) reduction in mixed (0.8 â~' x) M NaClO4 + xM NaF base electrolytes.<br>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 264, 217-234.                                                                | 0.1 | 11        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The catalysis of the electrochemical reduction of cadmium ions by chloride ions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 245, 167-189.                                                    | 0.1 | 18        |
| 164 | On the adsorption of cadmium(II) ions on a HMDE from KF + thiourea aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216, 273-282.                                               | 0.1 | 10        |
| 165 | On the catalytic effect of thiourea on the electrochemical reduction of cadmium(II) ions at the DME from aqueous 1 M KF solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 201, 33-45.    | 0.1 | 48        |
| 166 | Preparation and reproducibility of a thermal silver-silver chloride electrode. Journal of Applied Electrochemistry, 1985, 15, 727-735.                                                                                           | 2.9 | 6         |
| 167 | New Developments in Scanning Microelectrochemical Techniques: A Highly Sensitive Route to<br>Evaluate Degradation Reactions and Protection Methods with Chemical Selectivity. Applied Mechanics<br>and Materials, 0, 875, 19-23. | 0.2 | 0         |