Robert V Stahelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane-Protein Interactions in Cell Signaling and Membrane Trafficking. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 119-151.	18.3	561
2	A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520, 683-687.	13.7	485
3	Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO Journal, 2002, 21, 5057-5068.	3.5	296
4	Membrane binding and subcellular targeting of C2 domains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 838-849.	1.2	238
5	Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2Aâ€RIPK1â€dependent necroptosis. EMBO Molecular Medicine, 2013, 5, 105-121.	3.3	217
6	Differential Roles of Ionic, Aliphatic, and Aromatic Residues in Membraneâ^'Protein Interactions:Â A Surface Plasmon Resonance Study on Phospholipases A2â€. Biochemistry, 2001, 40, 4672-4678.	1.2	161
7	Contrasting Membrane Interaction Mechanisms of AP180 N-terminal Homology (ANTH) and Epsin N-terminal Homology (ENTH) Domains. Journal of Biological Chemistry, 2003, 278, 28993-28999.	1.6	159
8	Phosphatidylinositol 3-Phosphate Induces the Membrane Penetration of the FYVE Domains of Vps27p and Hrs. Journal of Biological Chemistry, 2002, 277, 26379-26388.	1.6	145
9	Membrane Binding Mechanisms of the PX Domains of NADPH Oxidase p40 and p47. Journal of Biological Chemistry, 2003, 278, 14469-14479.	1.6	131
10	The Mechanism of Membrane Targeting of Human Sphingosine Kinase 1. Journal of Biological Chemistry, 2005, 280, 43030-43038.	1.6	130
11	Membrane Binding Assays for Peripheral Proteins. Analytical Biochemistry, 2001, 296, 153-161.	1.1	123
12	Activation Mechanisms of Conventional Protein Kinase C Isoforms Are Determined by the Ligand Affinity and Conformational Flexibility of Their C1 Domains. Journal of Biological Chemistry, 2003, 278, 46886-46894.	1.6	122
13	Mechanism of Diacylglycerol-induced Membrane Targeting and Activation of Protein Kinase Cδ. Journal of Biological Chemistry, 2004, 279, 29501-29512.	1.6	122
14	The Molecular Basis of Differential Subcellular Localization of C2 Domains of Protein Kinase C-α and Group IVa Cytosolic Phospholipase A2. Journal of Biological Chemistry, 2003, 278, 12452-12460.	1.6	116
15	Ceramide 1-Phosphate Acts as a Positive Allosteric Activator of Group IVA Cytosolic Phospholipase A2α and Enhances the Interaction of the Enzyme with Phosphatidylcholine*. Journal of Biological Chemistry, 2005, 280, 17601-17607.	1.6	116
16	Roles of Ionic Residues of the C1 Domain in Protein Kinase C-α Activation and the Origin of Phosphatidylserine Specificity. Journal of Biological Chemistry, 2001, 276, 4218-4226.	1.6	114
17	Ceramide-1-phosphate Binds Group IVA Cytosolic Phospholipase a2 via a Novel Site in the C2 Domain. Journal of Biological Chemistry, 2007, 282, 20467-20474.	1.6	114
18	Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Science Signaling, 2015, 8, ra58.	1.6	114

#	Article	IF	CITATIONS
19	Lipid binding domains: more than simple lipid effectors. Journal of Lipid Research, 2009, 50, S299-S304.	2.0	111
20	Endoplasmic Reticulum PI(3)P Lipid Binding Targets Malaria Proteins to the Host Cell. Cell, 2012, 148, 201-212.	13.5	110
21	Diacylglycerol-induced Membrane Targeting and Activation of Protein Kinase Cïµ. Journal of Biological Chemistry, 2005, 280, 19784-19793.	1.6	104
22	Molecular Basis of Phosphatidylinositol 4-Phosphate and ARF1 GTPase Recognition by the FAPP1 Pleckstrin Homology (PH) Domain. Journal of Biological Chemistry, 2011, 286, 18650-18657.	1.6	100
23	Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chemistry and Physics of Lipids, 2014, 182, 3-18.	1.5	95
24	Mechanism of Diacylglycerol-induced Membrane Targeting and Activation of Protein Kinase CÎ,. Journal of Biological Chemistry, 2007, 282, 21467-21476.	1.6	94
25	Mechanism of Membrane Binding of the Phospholipase D1 PX Domain. Journal of Biological Chemistry, 2004, 279, 54918-54926.	1.6	93
26	Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis. Journal of Lipid Research, 2007, 48, 1293-1304.	2.0	90
27	Ceramide 1-Phosphate Is Required for the Translocation of Group IVA Cytosolic Phospholipase A2 and Prostaglandin Synthesis. Journal of Biological Chemistry, 2009, 284, 26897-26907.	1.6	85
28	Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus. Journal of Virology, 2015, 89, 9440-9453.	1.5	82
29	The Ebola Virus Matrix Protein Penetrates into the Plasma Membrane. Journal of Biological Chemistry, 2013, 288, 5779-5789.	1.6	81
30	Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood, 2018, 131, 1234-1247.	0.6	80
31	SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles. Journal of Biological Chemistry, 2021, 296, 100103.	1.6	80
32	Differential Roles of Phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in Plasma Membrane Targeting of C2 Domains. Journal of Biological Chemistry, 2008, 283, 26047-26058.	1.6	75
33	Bright red-emitting pyrene derivatives with a large Stokes shift for nucleus staining. Chemical Communications, 2017, 53, 5886-5889.	2.2	74
34	The Ebola Virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for extensive oligomerization at the plasma membrane and viral egress. Scientific Reports, 2016, 6, 19125.	1.6	73
35	Structural and Membrane Binding Analysis of the Phox Homology Domain of Phosphoinositide 3-Kinase-C2α. Journal of Biological Chemistry, 2006, 281, 39396-39406.	1.6	72
36	Investigation of Ebola VP40 Assembly and Oligomerization in Live Cells Using Number and Brightness Analysis. Biophysical Journal, 2012, 102, 2517-2525.	0.2	72

#	Article	IF	CITATIONS
37	Molecular Mechanism of Membrane Docking by the Vam7p PX Domain. Journal of Biological Chemistry, 2006, 281, 37091-37101.	1.6	71
38	Selection of DNA ligands for protein kinase C-?. Chemical Communications, 2006, , 3229.	2.2	70
39	Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Molecular Biology of the Cell, 2013, 24, 883-886.	0.9	67
40	The Ebola Virus Matrix Protein Deeply Penetrates the Plasma Membrane: An Important Step in Viral Egress. Biophysical Journal, 2013, 104, 1940-1949.	0.2	64
41	Computer Modeling of the Membrane Interaction of FYVE Domains. Journal of Molecular Biology, 2003, 328, 721-736.	2.0	61
42	Roles of calcium ions in the membrane binding of C2 domains. Biochemical Journal, 2001, 359, 679-685.	1.7	59
43	Ceramide Kinase Regulates the Production of Tumor Necrosis Factor α (TNFα) via Inhibition of TNFα-converting Enzyme. Journal of Biological Chemistry, 2011, 286, 42808-42817.	1.6	59
44	Structural Bioinformatics Prediction of Membrane-binding Proteins. Journal of Molecular Biology, 2006, 359, 486-495.	2.0	58
45	Membrane insertion of the FYVE domain is modulated by pH. Proteins: Structure, Function and Bioinformatics, 2009, 76, 852-860.	1.5	58
46	Membrane binding and bending in Ebola VP40 assembly and egress. Frontiers in Microbiology, 2014, 5, 300.	1.5	58
47	Biophysical and Computational Studies of Membrane Penetration by the GRP1 Pleckstrin Homology Domain. Structure, 2011, 19, 1338-1346.	1.6	56
48	The Molecular Basis of the Differential Subcellular Localization of FYVE Domains. Journal of Biological Chemistry, 2004, 279, 53818-53827.	1.6	55
49	X-Ray Reflectivity Studies of cPLA2α-C2 Domains Adsorbed onto Langmuir Monolayers of SOPC. Biophysical Journal, 2005, 89, 1861-1873.	0.2	55
50	The Origin of C1A-C2 Interdomain Interactions in Protein Kinase Cα. Journal of Biological Chemistry, 2005, 280, 36452-36463.	1.6	54
51	Molecular mechanism of membrane targeting by the GRP1 PH domain*. Journal of Lipid Research, 2008, 49, 1807-1815.	2.0	54
52	The Ebola Virus Matrix Protein VP40 Selectively Induces Vesiculation from Phosphatidylserine-enriched Membranes. Journal of Biological Chemistry, 2014, 289, 33590-33597.	1.6	54
53	Structural and Membrane Binding Analysis of the Phox Homology Domain of Bem1p. Journal of Biological Chemistry, 2007, 282, 25737-25747.	1.6	53
54	Amot Recognizes a Juxtanuclear Endocytic Recycling Compartment via a Novel Lipid Binding Domain. Journal of Biological Chemistry, 2010, 285, 12308-12320.	1.6	50

#	Article	IF	CITATIONS
55	Roles of calcium ions in the membrane binding of C2 domains. Biochemical Journal, 2001, 359, 679.	1.7	49
56	Single-Particle Tracking Demonstrates that Actin Coordinates the Movement of the Ebola Virus Matrix Protein. Biophysical Journal, 2012, 103, L41-L43.	0.2	48
57	Could the Ebola virus matrix protein VP40 be a drug target?. Expert Opinion on Therapeutic Targets, 2014, 18, 115-120.	1.5	48
58	p47 Phox Homology Domain Regulates Plasma Membrane but Not Phagosome Neutrophil NADPH Oxidase Activation. Journal of Biological Chemistry, 2010, 285, 35169-35179.	1.6	44
59	The Ebola virus protein VP40 hexamer enhances the clustering of PI(4,5)P ₂ lipids in the plasma membrane. Physical Chemistry Chemical Physics, 2016, 18, 28409-28417.	1.3	44
60	Anionic lipids activate group IVA cytosolic phospholipase A2 via distinct and separate mechanisms. Journal of Lipid Research, 2007, 48, 2701-2708.	2.0	42
61	A New Model of Interfacial Kinetics for Phospholipases. Biophysical Journal, 2013, 105, 1-2.	0.2	42
62	SH3 Domain-Containing Protein 2 Plays a Crucial Role at the Step of Membrane Tubulation during Cell Plate Formation. Plant Cell, 2017, 29, 1388-1405.	3.1	42
63	Ceramide 1-Phosphate Mediates Endothelial Cell Invasion via the Annexin a2-p11 Heterotetrameric Protein Complex. Journal of Biological Chemistry, 2013, 288, 19726-19738.	1.6	40
64	pH-dependent Binding of the Epsin ENTH Domain and the AP180 ANTH Domain to PI(4,5)P2-containing Bilayers. Journal of Molecular Biology, 2007, 373, 412-423.	2.0	39
65	A cationic, C-terminal patch and structural rearrangements in Ebola virus matrix VP40 protein control its interactions with phosphatidylserine. Journal of Biological Chemistry, 2018, 293, 3335-3349.	1.6	38
66	Emerging methodologies to investigate lipid–protein interactions. Integrative Biology (United) Tj ETQq0 0 0 rg	zBT/Qverl	lock <u>3</u> 10 Tf 50 3
67	A Loop Region in the N-Terminal Domain of Ebola Virus VP40 Is Important in Viral Assembly, Budding, and Egress. Viruses, 2014, 6, 3837-3854.	1.5	35
68	Drp1 Tubulates the ER in a GTPase-Independent Manner. Molecular Cell, 2020, 80, 621-632.e6.	4.5	35
69	Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor TÂcell response. Cell Reports, 2021, 35, 109076.	2.9	35
70	The molecular basis of ceramide-1-phosphate recognition by C2 domains. Journal of Lipid Research, 2013, 54, 636-648.	2.0	34
71	Synthesis and Convenient Functionalization of Azide-Labeled Diacylglycerol Analogues for Modular Access to Biologically Active Lipid Probes. Bioconjugate Chemistry, 2008, 19, 1855-1863.	1.8	33
72	Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. Journal of Virology, 2016, 90, 1839-1848.	1.5	33

#	Article	IF	CITATIONS
73	Nonâ€Peptidic Cellâ€Penetrating Motifs for Mitochondrionâ€6pecific Cargo Delivery. Angewandte Chemie - International Edition, 2018, 57, 17183-17188.	7.2	32
74	Cellular Membranes and Lipid-Binding Domains as Attractive Targets for Drug Development. Current Drug Targets, 2008, 9, 603-613.	1.0	31
75	Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry. Journal of Biological Chemistry, 2017, 292, 6108-6122.	1.6	30
76	Red-emitting pyrene–benzothiazolium: unexpected selectivity to lysosomes for real-time cell imaging without alkalinizing effect. Chemical Communications, 2019, 55, 3469-3472.	2.2	30
77	Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. Journal of Bioenergetics and Biomembranes, 2018, 50, 1-10.	1.0	28
78	Protein Kinase CÎ, C2 Domain Is a Phosphotyrosine Binding Module That Plays a Key Role in Its Activation. Journal of Biological Chemistry, 2012, 287, 30518-30528.	1.6	26
79	Orientation and Penetration Depth of Monolayer-Bound p40phox-PX. Biochemistry, 2006, 45, 13566-13575.	1.2	25
80	Using Surface Plasmon Resonance to Quantitatively Assess Lipid–Protein Interactions. Methods in Molecular Biology, 2016, 1376, 141-153.	0.4	25
81	Host targeting of virulence determinants and phosphoinositides in blood stage malaria parasites. Trends in Parasitology, 2012, 28, 555-562.	1.5	24
82	Bright red-emitting highly reliable styryl probe with large stokes shift for visualizing mitochondria in live cells under wash-free conditions. Sensors and Actuators B: Chemical, 2019, 285, 76-83.	4.0	24
83	Noncovalent Keystone Interactions Controlling Biomembrane Structure. Chemistry - A European Journal, 2008, 14, 1690-1697.	1.7	23
84	C2 domain membrane penetration by group IVA cytosolic phospholipase A2 induces membrane curvature changes. Journal of Lipid Research, 2012, 53, 2656-2666.	2.0	23
85	Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40. Journal of Virology, 2016, 90, 3074-3085.	1.5	23
86	Development of a biochemistry laboratory course with a project-oriented goal. Biochemistry and Molecular Biology Education, 2003, 31, 106-112.	0.5	22
87	Modular synthesis of biologically active phosphatidic acid probes using click chemistry. Molecular BioSystems, 2009, 5, 962.	2.9	22
88	Pancreatic ductal adenocarcinoma cell secreted extracellular vesicles containing ceramide-1-phosphate promote pancreatic cancer stem cell motility. Biochemical Pharmacology, 2018, 156, 458-466.	2.0	22
89	A panâ€apicomplexan phosphoinositideâ€binding protein acts in malarial microneme exocytosis. EMBO Reports, 2019, 20,	2.0	22
90	MeTaDoR: a comprehensive resource for membrane targeting domains and their host proteins. Bioinformatics, 2007, 23, 3110-3112.	1.8	21

#	Article	IF	CITATIONS
91	Interdomain saltâ€bridges in the Ebola virus protein VP40 and their role in domain association and plasma membrane localization. Protein Science, 2016, 25, 1648-1658.	3.1	21
92	Genome-wide Structural Analysis Reveals Novel Membrane Binding Properties of AP180 N-terminal Homology (ANTH) Domains. Journal of Biological Chemistry, 2011, 286, 34155-34163.	1.6	19
93	Receptor-interacting Ser/Thr kinase 1 (RIPK1) and myosin IIA–dependent ceramidosomes form membrane pores that mediate blebbing and necroptosis. Journal of Biological Chemistry, 2019, 294, 502-519.	1.6	19
94	Graphene-VP40 interactions and potential disruption of the Ebola virus matrix filaments. Biochemical and Biophysical Research Communications, 2017, 493, 176-181.	1.0	18
95	Structural Effect on the Cellular Selectivity of an NIR-Emitting Cyanine Probe: From Lysosome to Simultaneous Nucleus and Mitochondria Selectivity with Potential for Monitoring Mitochondria Dysfunction in Cells. ACS Applied Bio Materials, 2019, 2, 5174-5181.	2.3	18
96	PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte. Molecular and Biochemical Parasitology, 2012, 185, 106-113.	0.5	17
97	Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine. Biomolecules, 2019, 9, 152.	1.8	17
98	A pyrene-based two-photon excitable fluorescent probe to visualize nuclei in live cells. Photochemical and Photobiological Sciences, 2020, 19, 1152-1159.	1.6	17
99	Notes and tips for improving quality of lipid-protein overlay assays. Analytical Biochemistry, 2017, 516, 9-12.	1.1	16
100	Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer. RSC Advances, 2017, 7, 22741-22748.	1.7	15
101	Lysosome imaging in cancer cells by pyrene-benzothiazolium dyes: An alternative imaging approach for LAMP-1 expression based visualization methods to avoid background interference. Bioorganic Chemistry, 2019, 91, 103144.	2.0	14
102	Extended hypoxiaâ€mediated H ₂ S production provides for longâ€term oxygen sensing. Acta Physiologica, 2020, 228, e13368.	1.8	14
103	Molecular Analysis of Membrane Targeting by the C2 Domain of the E3 Ubiquitin Ligase Smurf1. Biomolecules, 2020, 10, 229.	1.8	13
104	Lipid-specific oligomerization of the Marburg virus matrix protein VP40 is regulated by two distinct interfaces for virion assembly. Journal of Biological Chemistry, 2021, 296, 100796.	1.6	13
105	Eukaryotic virulence determinants utilize phosphoinositides at the ER and host cell surface. Trends in Microbiology, 2013, 21, 145-156.	3.5	12
106	Lipid–protein interactions in virus assembly and budding from the host cell plasma membrane. Biochemical Society Transactions, 2021, 49, 1633-1641.	1.6	12
107	Cysteine Mutations in the Ebolavirus Matrix Protein VP40 Promote Phosphatidylserine Binding by Increasing the Flexibility of a Lipid-Binding Loop. Viruses, 2021, 13, 1375.	1.5	11
108	Monitoring Peripheral Protein Oligomerization on Biological Membranes. Methods in Cell Biology, 2013, 117, 359-371.	0.5	10

#	Article	IF	CITATIONS
109	A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. MBio, 2022, 13, e0323921.	1.8	10
110	The first DEP domain of the RhoGEF P-Rex1 autoinhibits activity and contributes to membrane binding. Journal of Biological Chemistry, 2020, 295, 12635-12647.	1.6	9
111	A Conserved Tryptophan in the Ebola Virus Matrix Protein C-Terminal Domain Is Required for Efficient Virus-Like Particle Formation. Pathogens, 2020, 9, 402.	1.2	8
112	Effects of Manganese Porphyrins on Cellular Sulfur Metabolism. Molecules, 2020, 25, 980.	1.7	8
113	The Cytosolic Phospholipase A2α N-Terminal C2 Domain Binds and Oligomerizes on Membranes with Positive Curvature. Biomolecules, 2020, 10, 647.	1.8	8
114	The Ebola virus matrix protein VP40 hijacks the host plasma membrane to form virus envelope. Journal of Lipid Research, 2020, 61, 971.	2.0	8
115	Bacterial Expression and Purifi cation of C1 and C2 Domains of Protein Kinase C Isoforms. , 2003, 233, 291-298.		7
116	Metabolically Stabilized Derivatives of Phosphatidylinositol 4-Phosphate: Synthesis and Applications. Chemistry and Biology, 2011, 18, 1312-1319.	6.2	7
117	Phospholipid Catabolism. , 2016, , 237-257.		7
118	Conformational Flexibility of the Protein–Protein Interfaces of the Ebola Virus VP40 Structural Matrix Filament. Journal of Physical Chemistry B, 2019, 123, 9045-9053.	1.2	7
119	Investigation of the biophysical properties of a fluorescently modified ceramide-1-phosphate. Chemistry and Physics of Lipids, 2016, 200, 32-41.	1.5	6
120	Characterization of the Relationship between the Chaperone and Lipid-Binding Functions of the 70-kDa Heat-Shock Protein, HspA1A. International Journal of Molecular Sciences, 2020, 21, 5995.	1.8	6
121	Mutation of Hydrophobic Residues in the C-Terminal Domain of the Marburg Virus Matrix Protein VP40 Disrupts Trafficking to the Plasma Membrane. Viruses, 2020, 12, 482.	1.5	6
122	The Plasmodium falciparum MESA erythrocyte cytoskeleton-binding (MEC) motif binds to erythrocyte ankyrin. Molecular and Biochemical Parasitology, 2019, 231, 111189.	0.5	5
123	Ebola virus protein <scp>VP40</scp> binding to Sec24c for transport to the plasma membrane. Proteins: Structure, Function and Bioinformatics, 2022, 90, 340-350.	1.5	5
124	Editorial [Hot Topic: Peripheral Proteins as Drug Targets (Guest Editor: Robert V. Stahelin)]. Current Drug Targets, 2008, 9, 601-602.	1.0	4
125	The CryoAPEX Method for Electron Microscopy Analysis of Membrane Protein Localization Within Ultrastructurally-Preserved Cells. Journal of Visualized Experiments, 2020, , .	0.2	4
126	Mechanisms of phosphatidylserine influence on viral production: A computational model of Ebola virus matrix protein assembly. Journal of Biological Chemistry, 2022, 298, 102025.	1.6	4

#	Article	IF	CITATIONS
127	Negative-sense RNA viruses: An underexplored platform for examining virus–host lipid interactions. Molecular Biology of the Cell, 2021, 32, pe1.	0.9	3
128	Time to Fold: Tom1ÂUses New Tricks to Regulate Lipid Binding of Tollip. Structure, 2015, 23, 1781-1782.	1.6	2
129	Cryofixation of Inactivated Hantavirus-Infected Cells as a Method for Obtaining High-Quality Ultrastructural Preservation for Electron Microscopic Studies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 580339.	1.8	2
130	The Minor Matrix Protein VP24 from Ebola Virus Lacks Direct Lipid-Binding Properties. Viruses, 2020, 12, 869.	1.5	2
131	Live ell Imaging of Ebola Virus Matrix Protein VP40. FASEB Journal, 2015, 29, 886.4.	0.2	2
132	Repurposing Fendiline as a novel antiâ€viral therapeutic. FASEB Journal, 2018, 32, 671.9.	0.2	2
133	Phosphatidylinositol Monophosphates Regulate the Membrane Localization of HSPA1A, a Stress-Inducible 70-kDa Heat Shock Protein. Biomolecules, 2022, 12, 856.	1.8	2
134	Ready, Set, Go! How Protein Kinase C Manages Dynamic Signaling. Chemistry and Biology, 2014, 21, 433-434.	6.2	1
135	The Ebola Virus: From Basic Research to a Clobal Health Crisis. PLoS Pathogens, 2015, 11, e1005093.	2.1	1
136	In vitro and Cellular Membrane-binding Mechanisms of Membrane-targeting Domains. , 2006, , 367-401.		0
137	The Ebola Virus Matrix Protein VP40 Interacts With Several Host Protein Networks to Facilitate Viral Replication. Current Clinical Microbiology Reports, 2015, 2, 137-141.	1.8	0
138	The unmasking of the lipid binding face of sphingosine kinase 1. Journal of Lipid Research, 2018, 59, 401-403.	2.0	0
139	SARSâ€CoVâ€2 Viral Budding and Entry can be Modeled Using BSLâ€2 Level Virusâ€Like Particles. FASEB Journal, 2021, 35, .	0.2	Ο
140	Investigation of HIVâ€1 Proteinâ€Lipid Interactions During Assembly at the Plasma Membrane. FASEB Journal, 2009, 23, 873.4.	0.2	0
141	Investigation of Lipidâ€Based Assembly of Viral Particles. FASEB Journal, 2010, 24, 475.6.	0.2	0
142	Undergraduate Laboratory: Increasing Awareness of the Role of Lipids in Biochemistry. FASEB Journal, 2010, 24, 532.4.	0.2	0
143	Team Based Learning Activities in the Academic Research Laboratory. FASEB Journal, 2010, 24, 531.5.	0.2	0
144	Investigation of the Mechanism of Hydrogen Sulfide Activation of Protein Kinase C. FASEB Journal, 2010, 24, 690.1.	0.2	0

#	Article	IF	CITATIONS
145	Diabetes Mellitus: Clinical and Biochemical Perspectives. FASEB Journal, 2010, 24, 659.10.	0.2	0
146	Interdisciplinary Studies of the Multifaceted C2 Domains. FASEB Journal, 2010, 24, 478.5.	0.2	0
147	Molecular Architecture of Viral Assembly and Bud Site Formation. FASEB Journal, 2010, 24, 478.6.	0.2	0
148	Elucidation of the cytosolic phospholipase A2â€Î±â€â€ceramideâ€1â€phosphate binding site. FASEB Journal, 201 939.4.	1,25, 0.2	0
149	The Molecular Basis of Ceramideâ€1â€Phosphate Recognition by Peripheral Proteins. FASEB Journal, 2011, 25, 939.11.	0.2	0
150	C2 Domains: Versatile Lipid Binding Modules. FASEB Journal, 2011, 25, 939.10.	0.2	0
151	Molecular Architecture of Viral Assembly and Bud Site Formation. FASEB Journal, 2011, 25, .	0.2	0
152	Structureâ€function investigation of PI(4)P binding proteins. FASEB Journal, 2011, 25, .	0.2	0
153	The Characterization and Identification of Ceramideâ€1â€Phosphate Binding Proteins. FASEB Journal, 2012, 26, 991.3.	0.2	0
154	Lipid binding properties of Ebola virus matrix protein VP40. FASEB Journal, 2013, 27, 1021.9.	0.2	0
155	Spatial and temporal regulation of the Nedd4 family ubiquitin ligases through phospholipid binding. FASEB Journal, 2013, 27, 1021.8.	0.2	0
156	Investigating the Molecular Basis of cPLA2α Membrane Bending. FASEB Journal, 2013, 27, 587.3.	0.2	0
157	Discovery of Ceramide 1â€Phosphate Binding Proteins. FASEB Journal, 2015, 29, 886.7.	0.2	0
158	Functional Studies of Ebola Virus Matrix Protein VP40. FASEB Journal, 2015, 29, 886.3.	0.2	0
159	The Effects of Point Mutations on the Dimerization Domain of Ebola Virus Protein VP40. FASEB Journal, 2022, 36, .	0.2	0