
Ali Triki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212112/publications.pdf Version: 2024-02-01

Διι Τρινι

#	Article	IF	CITATIONS
1	A Finite Element based solver for simulating open-channel transient flows The gradually varied regime. ISH Journal of Hydraulic Engineering, 2022, 28, 103-109.	1.1	8
2	Numerical investigation towards the improvement of hydraulic-jump prediction in rectangular open-channels. ISH Journal of Hydraulic Engineering, 2022, 28, 135-142.	1.1	6
3	Investigating the unidirectional flow behavior in trapezoidal open-channel. ISH Journal of Hydraulic Engineering, 2022, 28, 385-390.	1.1	6
4	Investigation of Pump Failure-Induced Waterhammer Waves: A Case Study. Journal of Pressure Vessel Technology, Transactions of the ASME, 2022, 144, .	0.4	9
5	On the Unidirectional Free-Surface Flow Solution in a Rectangular Open Channel. Applied Condition Monitoring, 2021, , 79-86.	0.4	3
6	Controlling of Steel-Pipe-Based Hydraulic Systems Using Dual In-Series Polymeric Short-Sections. Applied Condition Monitoring, 2021, , 95-104.	0.4	1
7	Transient Comprehensive Modelling Due to Pump Failure. Applied Condition Monitoring, 2021, , 117-124.	0.4	1
8	On the Numerical Solution of the Rapidly Varied Regime in Open-Channel Flows. Applied Condition Monitoring, 2021, , 87-94.	0.4	3
9	Benchmarking the Dual and Compound Techniques-Based Branching Design Strategy Used for Upgrading of Pressurized Hydraulic Systems. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, 143, .	0.4	8
10	On the unidirectional free-surface flow behavior in trapezoidal cross-sectional open-channels. Ocean Engineering, 2021, 223, 108656.	1.9	9
11	On the in-series and branching dual-technique - based water-hammer control strategy. Urban Water Journal, 2021, 18, 631-639.	1.0	8
12	Exploring induced oscillatory free-surface waves in prismatic open-channel. Ocean Engineering, 2021, 236, 109368.	1.9	5
13	A Multiple-Grid Technique–Based Finite Element Solution of Free-Surface Flows in a Trapezoidal Open Channel. Applied Condition Monitoring, 2021, , 10-18.	0.4	3
14	Investigating the Free-Surface Flow Behavior Due to Sluice-Gate Maneuvers. Lecture Notes in Mechanical Engineering, 2021, , 405-411.	0.3	9
15	The Branching Redesign Technique Used for Upgrading Steel-Pipes-Based Hydraulic Systems: Re-Examined. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, 143, .	0.4	7
16	On the transient flow behavior in pressurized plastic pipe-based water supply systems. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 67-76.	0.6	7
17	Comparative assessment of the inline and branching design strategies based on the compound technique. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 155-170.	0.6	10
18	Exploring the performances of the dual technique-based water hammer redesign strategy in water supply systems. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 6-17.	0.6	14

Ali Triki

#	Article	IF	CITATIONS
19	Investigating the branching redesign strategy for surge control in pressurized steel piping systems. International Journal of Pressure Vessels and Piping, 2020, 180, 104044.	1.2	10
20	Exploring the Performance of the Inline Technique-Based Water-Hammer Design Strategy in Pressurized Steel Pipe Flows. Lecture Notes in Mechanical Engineering, 2020, , 83-91.	0.3	2
21	Water-Hammer Control in Pressurized Pipe Flow Using Dual (LDPE/LDPE) Inline Plastic Sub Short-Sections. Lecture Notes in Mechanical Engineering, 2020, , 953-961.	0.3	3
22	Investigating the Removal of Hydraulic Cavitation from Pressurized Steel Piping Systems. Lecture Notes in Mechanical Engineering, 2020, , 92-101.	0.3	3
23	Assessing the Inline and Branching Techniques in Mitigating Water-Hammer Surge Waves. Lecture Notes in Mechanical Engineering, 2020, , 155-163.	0.3	2
24	Investigating the Inline Design Measure in Existing Pressurized Steel Piping Systems. Lecture Notes in Mechanical Engineering, 2020, , 74-82.	0.3	3
25	Investigation on Redesigning Strategies for Water-Hammer Control in Pressurized-Piping Systems. Journal of Pressure Vessel Technology, Transactions of the ASME, 2019, 141, .	0.4	25
26	Assessment of inline technique-based water hammer control strategy in water supply systems. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 562-572.	0.6	16
27	Dual control technique for mitigating water-hammer phenomenon in pressurized steel-piping systems. International Journal of Pressure Vessels and Piping, 2019, 172, 397-413.	1.2	23
28	Compound technique -based inline design strategy for water-hammer control in steel pressurized-piping systems. International Journal of Pressure Vessels and Piping, 2019, 169, 188-203.	1.2	43
29	Alternative Design Strategy for Water-Hammer Control in Pressurized-Pipe Flow. Applied Condition Monitoring, 2019, , 157-165.	0.4	10
30	Further investigation on water-hammer control inline strategy in water-supply systems. Journal of Water Supply: Research and Technology - AQUA, 2018, 67, 30-43.	0.6	40
31	Dual-technique-based inline design strategy for water-hammer control in pressurized pipe flow. Acta Mechanica, 2018, 229, 2019-2039.	1.1	37
32	Further investigation on the water-hammer control branching strategy in pressurized steel-piping systems. International Journal of Pressure Vessels and Piping, 2018, 165, 135-144.	1.2	34
33	Further investigation on the resonance of free-surface waves provoked by floodgate maneuvers: Negative surge waves. Ocean Engineering, 2017, 133, 133-141.	1.9	27
34	Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock. Journal of Pipeline Systems Engineering and Practice, 2017, 8, .	0.9	47
35	Erratum for "Resonance of Free-Surface Waves Provoked by Floodgate Maneuvers―by Ali Triki. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	12
36	Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mechanica, 2016, 227, 777-793.	1.1	53

Ali Triki

#	Article	IF	CITATIONS
37	Resonance of Free-Surface Waves Provoked by Floodgate Maneuvers. Journal of Hydrologic Engineering - ASCE, 2014, 19, 1124-1130.	0.8	28
38	Multiple-grid finite element solution of the shallow water equations: Water hammer phenomenon. Computers and Fluids, 2014, 90, 65-71.	1.3	23
39	A Finite Element Solution of the Unidimensional Shallow-Water Equation. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	19
40	Résonance des ondes de surface libre provoquée par les manœuvres de vannes. Houille Blanche, 2012, 98, 55-61.	0.3	3
41	Simulation numerique des écoulements transitoires à surface libre provoqués par la superposition de manœuvres de vannes. Houille Blanche, 2010, 96, 71-80.	0.3	3
42	Numerical Solution for One-Dimensional Open-Channel Transient Flow. International Journal of Modelling and Simulation, 2010, 30, 211-217.	2.3	3