Lizhong Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/21211/lizhong-zhu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 14,663 113 239 h-index g-index citations papers 16,672 8.9 246 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
239	Film mulching reduces antibiotic resistance genes in the phyllosphere of lettuce <i>Journal of Environmental Sciences</i> , 2022 , 112, 121-128	6.4	1
238	Residual chlorine disrupts the microbial communities and spreads antibiotic resistance in freshwater. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127152	12.8	16
237	Formation and Cytotoxicity of Halophenylacetamides: A New Group of Nitrogenous Aromatic Halogenated Disinfection Byproducts in Drinking Water <i>Environmental Science & Environmental Science & Envir</i>	10.3	4
236	Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds <i>Science of the Total Environment</i> , 2022 , 155090	10.2	1
235	Halonaphthoquinones: A group of emerging disinfection byproducts of high toxicity in drinking water <i>Water Research</i> , 2022 , 217, 118421	12.5	1
234	Human viruses lurking in the environment activated by excessive use of COVID-19 prevention supplies <i>Environment International</i> , 2022 , 163, 107192	12.9	0
233	Formation of chlorinated halobenzoquinones during chlorination of free aromatic amino acids <i>Science of the Total Environment</i> , 2022 , 825, 153904	10.2	1
232	Effects of iron mineral adhesion on bacterial conjugation: Interfering the transmission of antibiotic resistance genes through an interfacial process <i>Journal of Hazardous Materials</i> , 2022 , 435, 128889	12.8	O
231	Quantitative identification of halo-methyl-benzoquinones as disinfection byproducts in drinking water using a pseudo-targeted LC-MS/MS method <i>Water Research</i> , 2022 , 218, 118466	12.5	0
230	Application of FeO nanoparticles in controlling antibiotic resistance gene transport and interception in porous media <i>Science of the Total Environment</i> , 2022 , 155271	10.2	0
229	Halohydroxybenzonitriles as a new group of halogenated aromatic DBPs in drinking water: Are they of comparable risk to halonitrophenols?. <i>Water Research</i> , 2022 , 219, 118547	12.5	1
228	Molecular composition of halobenzoquinone precursors in natural organic matter in source water. <i>Water Research</i> , 2021 , 209, 117901	12.5	3
227	Multistage Defense System Activated by Tetrachlorobiphenyl and its Hydroxylated and Methoxylated Derivatives in. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	7
226	Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials. <i>Environmental Science & Environmental Science & En</i>	10.3	3
225	Iron Sulfide Enhanced the Dechlorination of Trichloroethene by Strain 195. <i>Frontiers in Microbiology</i> , 2021 , 12, 665281	5.7	1
224	Organophosphorus pesticides in greenhouse and open-field soils across China: Distribution characteristic, polluted pathway and health risk. <i>Science of the Total Environment</i> , 2021 , 765, 142757	10.2	13
223	Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. <i>Science of the Total Environment</i> , 2021 , 760, 143413	10.2	18

(2020-2021)

222	Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community. <i>Environmental Science: Nano</i> , 2021 , 8, 986-999	7.1	4	
221	Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation. <i>Journal of Hazardous Materials</i> , 2021 , 416, 126119	12.8	6	
220	Nano-Zoo Interfacial Interaction as a Design Principle for Hybrid Soil Remediation Technology. <i>ACS Nano</i> , 2021 , 15, 14954-14964	16.7	3	
219	Effects of biochar aging in the soil on its mechanical property and performance for soil CO and NO emissions. <i>Science of the Total Environment</i> , 2021 , 782, 146824	10.2	17	
218	Disturbed phospholipid metabolism by three polycyclic aromatic hydrocarbons in Oryza sativa. <i>Environmental Pollution</i> , 2021 , 283, 117073	9.3	2	
217	Transformation of emerging disinfection byproducts Halobenzoquinones to haloacetic acids during chlorination of drinking water. <i>Chemical Engineering Journal</i> , 2021 , 418, 129326	14.7	13	
216	Increased disinfection byproducts in the air resulting from intensified disinfection during the COVID-19 pandemic. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126249	12.8	4	
215	Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. <i>Science of the Total Environment</i> , 2021 , 792, 148352	10.2	18	
214	Co-occurrence of crAssphage and antibiotic resistance genes in agricultural soils of the Yangtze River Delta, China. <i>Environment International</i> , 2021 , 156, 106620	12.9	5	
213	Impact of a super typhoon on heavy metal distribution, migration, availability in agricultural soils. <i>Environmental Pollution</i> , 2021 , 289, 117835	9.3	3	
212	A Super Typhoon Disturbs Organic Contamination in Agricultural Soils. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 237-243	11	1	
211	Haloquinone Chloroimides as Toxic Disinfection Byproducts Identified in Drinking Water. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	3	
210	Role of Pyrogenic Carbon in Parallel Microbial Reduction of Nitrobenzene in the Liquid and Sorbed Phases. <i>Environmental Science & Environmental Scien</i>	10.3	10	
209	Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. <i>Science of the Total Environment</i> , 2020 , 731, 139181	10.2	7	
208	Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. <i>Frontiers of Environmental Science and Engineering</i> , 2020 , 14, 1	5.8	14	
207	Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. <i>Science of the Total Environment</i> , 2020 , 740, 140001	10.2	23	
206	Airborne microorganisms exacerbate the formation of atmospheric ammonium and sulfate. <i>Environmental Pollution</i> , 2020 , 263, 114293	9.3	10	
205	Metabolomic and Transcriptomic Investigation of Metabolic Perturbations in L. Triggered by Three Pesticides. <i>Environmental Science & Environmental Sc</i>	10.3	19	

204	A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants. <i>Environmental Pollution</i> , 2020 , 261, 114071	9.3	5
203	Enhanced reactivity and mechanisms of mesoporous carbon supported zero-valent iron composite for trichloroethylene removal in batch studies. <i>Science of the Total Environment</i> , 2020 , 718, 137256	10.2	6
202	Effect of TiO2 content on the properties of polysulfone nanofiltration membranes modified with a layer of TiO2graphene oxide. <i>Separation and Purification Technology</i> , 2020 , 242, 116770	8.3	31
201	Phytotoxicity and metabolic responses induced by tetrachlorobiphenyl and its hydroxylated and methoxylated derivatives in rice (Oryza sative L.). <i>Environment International</i> , 2020 , 139, 105695	12.9	14
200	Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. <i>Science of the Total Environment</i> , 2020 , 726, 137978	10.2	25
199	Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. <i>Science of the Total Environment</i> , 2020 , 701, 134916	10.2	16
198	Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121495	12.8	9
197	Effect and mechanism of biochar on CO and NO emissions under different nitrogen fertilization gradient from an acidic soil. <i>Science of the Total Environment</i> , 2020 , 747, 141265	10.2	10
196	Occurrence, Formation, and Oxidative Stress of Emerging Disinfection Byproducts, Halobenzoquinones, in Tea. <i>Environmental Science & Environmental Sci</i>	10.3	16
195	Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,254,4Stetrabromodiphenyl ether. <i>Environment International</i> , 2019 , 133, 105154	12.9	23
194	Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit the Growth and Reproduction of Earthworms in Soil. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 277-282	11	22
193	Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu onto biochar. <i>Science of the Total Environment</i> , 2019 , 673, 522-532	10.2	41
192	Effects of mixed surfactants on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in crops and the bioremediation of contaminated farmlands. <i>Science of the Total Environment</i> , 2019 , 646, 1211-1218	10.2	11
191	Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. <i>Science of the Total Environment</i> , 2019 , 647, 962-972	10.2	33
190	Addition of Shewanella oneidensis MR-1 to the Dehalococcoides-containing culture enhances the trichloroethene dechlorination. <i>Environment International</i> , 2019 , 133, 105245	12.9	8
189	Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. <i>Chemosphere</i> , 2019 , 224, 900-909	8.4	35
188	Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation. <i>Science of the Total Environment</i> , 2019 , 653, 1293-1300	10.2	16
187	Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure. <i>Science of the Total Environment</i> , 2019 , 653, 658-666	10.2	25

(2018-2019)

186	Nanoparticle TiO size and rutile content impact bioconcentration and biomagnification from algae to daphnia. <i>Environmental Pollution</i> , 2019 , 247, 421-430	9.3	33
185	Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure. <i>Environmental Pollution</i> , 2019 , 246, 124-130	9.3	11
184	Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. <i>Environmental Science & Environmental & Enviro</i>	10.3	349
183	The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). <i>Environmental Pollution</i> , 2018 , 235, 692-699	9.3	30
182	Mitigation and Remediation for Organic Contaminated Soils by Surfactants 2018, 629-644		1
181	Biochar alters microbial community and carbon sequestration potential across different soil pH. <i>Science of the Total Environment</i> , 2018 , 622-623, 1391-1399	10.2	122
180	Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2\$ 4, 4Stetrabromodiphenyl ether. <i>Environmental Pollution</i> , 2018 , 237, 308-317	9.3	21
179	Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 34-42	5.1	33
178	Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 4-11	5.1	33
177	Uptake, translocation, and metabolism of hydroxylated and methoxylated polychlorinated biphenyls in maize, wheat, and rice. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 12-17	5.1	10
176	Sorption of phenanthrene to biochar modified by base. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	45
175	Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus subtilis: New insights into microbial metabolism. <i>Science of the Total Environment</i> , 2018 , 613-614, 54-61	10.2	23
174	Organic contamination and remediation in the agricultural soils of China: A critical review. <i>Science of the Total Environment</i> , 2018 , 615, 724-740	10.2	152
173	Separated pathways for biochar to affect soil NO emission under different moisture contents. <i>Science of the Total Environment</i> , 2018 , 645, 887-894	10.2	22
172	Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil. <i>Environmental Pollution</i> , 2018 , 240, 51-59	9.3	22
171	Spatial distributions of hexachlorobutadiene in agricultural soils from the Yangtze River Delta region of China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3378-3385	5.1	3
170	Effect of copper on the translocation and transformation of polychlorinated biphenyls in rice. <i>Chemosphere</i> , 2018 , 193, 514-520	8.4	5
169	Effects of biochar on CH4 emission with straw application on paddy soil. <i>Journal of Soils and Sediments</i> , 2018 , 18, 599-609	3.4	24

168	Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity. <i>Environmental Pollution</i> , 2018 , 243, 1509-1516	9.3	23
167	Impact of biochar on soil NO emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil. <i>Science of the Total Environment</i> , 2017 , 584-585, 776-7	8 ^{10.2}	57
166	Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. <i>Environmental Pollution</i> , 2017 , 227, 98-115	9.3	381
165	Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. <i>Nanotoxicology</i> , 2017 , 11, 591-612	5.3	172
164	Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. <i>Chemosphere</i> , 2017 , 178, 301-308	8.4	67
163	Self-cleaning liner for halogenated hydrocarbon control in landfill leachate. <i>Scientific Reports</i> , 2017 , 7, 14140	4.9	
162	Sugar Cane-Converted Graphene-like Material for the Superhigh Adsorption of Organic Pollutants from Water via Coassembly Mechanisms. <i>Environmental Science & Environmental Sc</i>	552 ^{0.3}	40
161	Antibiotics in the agricultural soils from the Yangtze River Delta, China. <i>Chemosphere</i> , 2017 , 189, 301-30	08 .4	85
160	Enhanced treatment of dispersed dye-production wastewater by self-assembled organobentonite in a one-step process with poly-aluminium chloride. <i>Scientific Reports</i> , 2017 , 7, 6843	4.9	7
159	The role of artificial root exudate components in facilitating the degradation of pyrene in soil. <i>Scientific Reports</i> , 2017 , 7, 7130	4.9	34
158	Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. <i>Environmental Pollution</i> , 2017 , 230, 927-935	9.3	18
157	Metabolomics analysis of TiO nanoparticles induced toxicological effects on rice (Oryza sativa L.). <i>Environmental Pollution</i> , 2017 , 230, 302-310	9.3	104
156	Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. <i>Environmental Geochemistry and Health</i> , 2017 , 39, 369-378	4.7	26
155	Transformation of hydroxylated and methoxylated 2,2\$4,4\$5-brominated diphenyl ether (BDE-99) in plants. <i>Journal of Environmental Sciences</i> , 2016 , 49, 197-202	6.4	6
154	Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. <i>Environmental Pollution</i> , 2016 , 219, 329-336	9.3	89
153	Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 219-228	5.8	4
152	Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. <i>Science of the Total Environment</i> , 2016 , 544, 670-6	10.2	106
151	Estimating Emissions and Environmental Fate of Di-(2-ethylhexyl) Phthalate in Yangtze River Delta, China: Application of Inverse Modeling. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	17

150	Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals: perspective of molecular interactions. <i>Journal of Soils and Sediments</i> , 2016 , 16, 1509-1518	3.4	18	
149	Interconversion between Methoxylated and Hydroxylated Polychlorinated Biphenyls in Rice Plants: An Important but Overlooked Metabolic Pathway. <i>Environmental Science & amp; Technology</i> , 2016 , 50, 3668-75	10.3	29	
148	Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation. <i>Scientific Reports</i> , 2016 , 6, 29782	4.9	17	
147	Evaluating bioavailability of organic pollutants in soils by sequential ultrasonic extraction procedure. <i>Chemosphere</i> , 2016 , 156, 21-29	8.4	29	
146	Durability of organobentonite-amended liner for decelerating chloroform transport. <i>Chemosphere</i> , 2016 , 149, 343-50	8.4	7	
145	Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. <i>Environmental Pollution</i> , 2016 , 214, 806-815	9.3	82	
144	Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 14451-61	5.1	59	
143	Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: Regional contamination characteristics, combined ecological effects and human health risks. <i>Chemosphere</i> , 2016 , 163, 422-428	8.4	25	
142	Reduced carbon sequestration potential of biochar in acidic soil. <i>Science of the Total Environment</i> , 2016 , 572, 129-137	10.2	63	
141	Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. <i>Scientific Reports</i> , 2015 , 5, 11641	4.9	61	
140	A new speciation scheme of soil polycyclic aromatic hydrocarbons for risk assessment. <i>Journal of Soils and Sediments</i> , 2015 , 15, 1139-1149	3.4	23	
139	Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron. <i>Applied Catalysis B: Environmental</i> , 2015 , 174-175, 329-335	21.8	86	
138	Combined (1)H NMR and LSER study for the compound-specific interactions between organic contaminants and organobentonites. <i>Journal of Colloid and Interface Science</i> , 2015 , 460, 119-27	9.3	4	
137	Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air. <i>Journal of Environmental Sciences</i> , 2015 , 32, 189-95	6.4	18	
136	Acid-assisted hydrothermal synthesis of nanocrystalline TiO2 from titanate nanotubes: influence of acids on the photodegradation of gaseous toluene. <i>Journal of Environmental Sciences</i> , 2015 , 27, 232-40	6.4	14	
135	Fixed-bed study and modeling of selective phenanthrene removal from surfactant solutions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 470, 100-107	5.1	5	
134	Gene expression of an arthrobacter in surfactant-enhanced biodegradation of a hydrophobic organic compound. <i>Environmental Science & Enp.</i> Technology, 2015 , 49, 3698-704	10.3	36	
133	Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. <i>Environmental Science & Environmental Science & Environment</i>	10.3	205	

132	Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process. <i>Frontiers of Environmental Science and Engineering</i> , 2014 , 8, 305-315	5.8	17
131	Effect of surfactant on phenanthrene metabolic kinetics by Citrobacter sp. SA01. <i>Journal of Environmental Sciences</i> , 2014 , 26, 2298-306	6.4	8
130	Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 3411-9	10.3	276
129	Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transport. <i>Chemosphere</i> , 2014 , 107, 58-64	8.4	22
128	Sorption characteristics of nitrosodiphenylamine (NDPhA) and diphenylamine (DPhA) onto organo-bentonite from aqueous solution. <i>Chemical Engineering Journal</i> , 2014 , 240, 487-493	14.7	22
127	Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants. <i>Journal of Environmental Sciences</i> , 2014 , 26, 1071-9	6.4	35
126	Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2. <i>Catalysis Today</i> , 2014 , 225, 24-33	5.3	62
125	Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain. <i>Bioresource Technology</i> , 2013 , 142, 454-61	11	88
124	Optimizing Nanoscale TiO2 for Adsorption-Enhanced Photocatalytic Degradation of Low-Concentration Air Pollutants. <i>ChemCatChem</i> , 2013 , 5, 3114-3123	5.2	25
123	Removal of polycyclic aromatic hydrocarbons from surfactant solutions by selective sorption with organo-bentonite. <i>Chemical Engineering Journal</i> , 2013 , 233, 251-257	14.7	41
122	Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time. <i>Environmental Technology (United Kingdom)</i> , 2013 , 34, 1447-5	5 2 .6	14
121	Subcellular distribution of fluoranthene in Chlorella vulgaris with the presence of cetyltrimethylammonium chloride. <i>Chemosphere</i> , 2013 , 90, 929-35	8.4	4
120	Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons. <i>Journal of Environmental Sciences</i> , 2013 , 25, 531-6	6.4	11
119	Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system. <i>Journal of Environmental Sciences</i> , 2013 , 25, 1355-61	6.4	11
118	Distribution, input pathway and soil-air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. <i>Science of the Total Environment</i> , 2013 , 444, 177-82	10.2	39
117	Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 425, 122-128	5.1	58
116	Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community. <i>Bioresource Technology</i> , 2013 , 134, 17-23	11	20
115	Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant. <i>Water Research</i> , 2013 , 47, 4006-12	12.5	31

(2009-2013)

114	Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. <i>Environmental Pollution</i> , 2013 , 173, 97-102	9.3	164
113	Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. <i>Environmental Pollution</i> , 2012 , 164, 169-74	9.3	64
112	Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process. <i>Journal of Environmental Sciences</i> , 2012 , 24, 248-53	6.4	23
111	Effect of soil components on the surfactant-enhanced soil sorption of PAHs. <i>Journal of Soils and Sediments</i> , 2012 , 12, 161-168	3.4	19
110	Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01. <i>Bioresource Technology</i> , 2012 , 123, 42-8	11	48
109	Effect of a cationic surfactant on the volatilization of PAHs from soil. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 1515-23	5.1	14
108	Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. <i>Environmental Science & Environmental Science & </i>	10.3	555
107	Effect of nutrient conditions on the toxicity of naphthalene to Chlorella pyrenoidosa. <i>Journal of Environmental Sciences</i> , 2011 , 23, 307-14	6.4	11
106	Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. <i>Environmental Pollution</i> , 2011 , 159, 1198-204	9.3	74
105	Oxalate enhanced mechanism of hydroxyl-Fe-pillared bentonite during the degradation of Orange II by UV-Fenton process. <i>Journal of Hazardous Materials</i> , 2011 , 185, 1477-81	12.8	33
104	Adsorption and conformation of a cationic surfactant on single-walled carbon nanotubes and their influence on naphthalene sorption. <i>Environmental Science & Environmental Sci</i>	10.3	63
103	Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 410-9	5.1	34
102	Effect of SDBSII ween 80 mixed surfactants on the distribution of polycyclic aromatic hydrocarbons in soil water system. <i>Journal of Soils and Sediments</i> , 2010 , 10, 1123-1130	3.4	30
101	Mitigation and remediation technologies for organic contaminated soils. <i>Frontiers of Environmental Science and Engineering in China</i> , 2010 , 4, 373-386		21
100	Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. <i>Environmental Monitoring and Assessment</i> , 2010 , 163, 573-81	3.1	30
99	Effect of zinc on the transformation of haloacetic acids (HAAs) in drinking water. <i>Journal of Hazardous Materials</i> , 2010 , 174, 40-6	12.8	21
98	The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. <i>Journal of Hazardous Materials</i> , 2010 , 178, 282-6	12.8	52
97	Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. <i>Atmospheric Environment</i> , 2009 , 43, 978-983	5.3	81

96	Comparative study on indoor air quality in Japan and China: Characteristics of residential indoor and outdoor VOCs. <i>Atmospheric Environment</i> , 2009 , 43, 6352-6359	5.3	105
95	Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention. <i>Environmental Pollution</i> , 2009 , 157, 1794-9	9.3	31
94	Effect of anionic-nonionic mixed surfactant on ryegrass uptake of phenanthrene and pyrene from water. <i>Science Bulletin</i> , 2009 , 54, 387-393	10.6	6
93	Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. <i>Journal of Hazardous Materials</i> , 2009 , 162, 1165-70	12.8	93
92	Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. <i>Journal of Hazardous Materials</i> , 2009 , 164, 700-6	12.8	54
91	Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites. <i>Journal of Hazardous Materials</i> , 2009 , 168, 1590-4	12.8	51
90	Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009 , 170, 7-12	12.8	145
89	Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. <i>Journal of Colloid and Interface Science</i> , 2009 , 331, 8-14	9.3	46
88	Comparative study of catalytic activity of different Fe-pillared bentonites in the presence of UV light and H2O2. <i>Separation and Purification Technology</i> , 2009 , 67, 282-288	8.3	33
87	Surface microtopography of surfactant modified montmorillonite. <i>Applied Clay Science</i> , 2009 , 45, 70-75	5.2	26
86	Sorption of polycyclic aromatic hydrocarbons to carbohydrates and lipids of ryegrass root and implications for a sorption prediction model. <i>Environmental Science & Environmental Science & Environme</i>	10.3	64
85	Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. <i>Environmental Science & Discourse (Manager Lechnology)</i> , 2008 , 42, 5137-43	10.3	1163
84	Microstructure of organo-bentonites in water and the effect of steric hindrance on the uptake of organic compounds. <i>Clays and Clay Minerals</i> , 2008 , 56, 144-154	2.1	39
83	Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant. <i>Water Research</i> , 2008 , 42, 101-8	12.5	61
82	Concentrations and characteristics of organochlorine pesticides in aquatic biota from Qiantang River in China. <i>Environmental Pollution</i> , 2008 , 151, 190-9	9.3	55
81	Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. <i>Environmental Pollution</i> , 2008 , 152, 130-7	9.3	33
80	Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. <i>Environmental Pollution</i> , 2008 , 152, 99-105	9.3	29
79	Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. <i>Environmental Pollution</i> , 2008 , 152, 569-75	9.3	92

78	Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environmental Pollution, 2008, 156, 46-52	9.3	62
77	Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. <i>Environmental Pollution</i> , 2008 , 156, 1368-70	9.3	94
76	Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation. <i>Chemosphere</i> , 2008 , 70, 1987-94	8.4	37
75	Structure of cetyltrimethylammonium intercalated hydrobiotite. <i>Applied Clay Science</i> , 2008 , 42, 224-231	l _{5.2}	55
74	Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2008 , 42, 7931-6	10.3	333
73	Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles. <i>Environmental Science & Environmental Sc</i>	10.3	48
72	Adsorptive characteristics of the siloxane surfaces of reduced-charge bentonites saturated with tetramethylammonium cation. <i>Environmental Science & Environmental Science & E</i>	10.3	24
71	Levels and source of organochlorine pesticides in surface waters of Qiantang River, China. <i>Environmental Monitoring and Assessment</i> , 2008 , 136, 277-87	3.1	50
70	Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 464-472		29
69	Thermodynamics of naphthalene sorption to organoclays: role of surfactant packing density. <i>Journal of Colloid and Interface Science</i> , 2008 , 322, 27-32	9.3	29
68	Structure of surfactant lay complexes and their sorptive characteristics toward HOCs. <i>Separation and Purification Technology</i> , 2008 , 63, 156-162	8.3	35
67	Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. <i>Journal of Hazardous Materials</i> , 2008 , 150, 308-16	12.8	76
66	Levels and distribution of organochlorine pesticides in shellfish from Qiantang River, China. <i>Journal of Hazardous Materials</i> , 2008 , 152, 1192-200	12.8	39
65	Simultaneous removal of acid dye and cationic surfactant from water by bentonite in one-step process. <i>Chemical Engineering Journal</i> , 2008 , 139, 503-509	14.7	54
64	Sorption characteristics of CTMABentonite complexes as controlled by surfactant packing density. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 294, 221-227	5.1	62
63	Influence of clay charge densities and surfactant loading amount on the microstructure of CTMAEhontmorillonite hybrids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 304, 41-48	5.1	61
62	Structures of hexamethonium exchanged bentonite and the sorption characteristics for phenol. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 307, 1-6	5.1	19
61	UV-Fenton discolouration and mineralization of Orange II over hydroxyl-Fe-pillared bentonite. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 188, 56-64	4.7	45

60	Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. <i>Journal of Hazardous Materials</i> , 2007 , 139, 193-8	12.8	55
59	Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. <i>Journal of Hazardous Materials</i> , 2007 , 141, 148-55	12.8	97
58	Effects of mixed surfactants on the volatilization of naphthalene from aqueous solutions. <i>Journal of Hazardous Materials</i> , 2007 , 140, 187-93	12.8	12
57	Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants. <i>Journal of Hazardous Materials</i> , 2007 , 142, 354-61	12.8	94
56	Silylated pillared clay (SPILC): A novel bentonite-based inorgano-organo composite sorbent synthesized by integration of pillaring and silylation. <i>Journal of Colloid and Interface Science</i> , 2007 , 315, 191-9	9.3	38
55	Simultaneous sorption of aqueous phenanthrene and phosphate onto bentonites modified with AlCl3 and CTMAB. <i>Frontiers of Environmental Science and Engineering in China</i> , 2007 , 1, 79-82		3
54	Pollution survey of carbonyl compounds in train air. <i>Frontiers of Environmental Science and Engineering in China</i> , 2007 , 1, 125-128		
53	Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. <i>Catalysis Today</i> , 2007 , 126, 463-470	5.3	151
52	Sorption of sodium dodecylbenzene sulfonate by montmorillonite. <i>Environmental Pollution</i> , 2007 , 145, 571-6	9.3	65
51	Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. <i>Environmental Pollution</i> , 2007 , 147, 350-7	9.3	62
50	Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactantPAHs system. <i>Environmental Pollution</i> , 2007 , 147, 66-73	9.3	105
49	Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons. <i>Chemosphere</i> , 2007 , 67, 402-9	8.4	25
48	Persistent chlorinated pesticides in fish species from Qiantang River in East China. <i>Chemosphere</i> , 2007 , 68, 838-47	8.4	60
47	Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. <i>Chemosphere</i> , 2007 , 68, 1883-8	8.4	42
46	Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. <i>Environmental Science & Environmental </i>	10.3	257
45	Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. <i>Environmental Science</i> & amp; Technology, 2006 , 40, 1855-61	10.3	649
44	Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air. Journal of Agricultural and Food Chemistry, 2006 , 54, 3658-62	5.7	61
43	Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. <i>Environmental Science & Environmental Science & E</i>	10.3	143

(2005-2006)

42	Factors affecting transfer of polycyclic aromatic hydrocarbons from made tea to tea infusion. Journal of Agricultural and Food Chemistry, 2006 , 54, 4350-4	5.7	44
41	Solubilization of DNAPLs by mixed surfactant: reduction in partitioning losses of nonionic surfactant. <i>Chemosphere</i> , 2006 , 62, 772-9	8.4	38
40	Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water. <i>Chemosphere</i> , 2006 , 65, 1249-55	8.4	74
39	Characteristics of organobentonite prepared by microwave as a sorbent to organic contaminants in water. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 281, 177-183	5.1	13
38	Microwave enhanced-sorption of dyestuffs to dual-cation organobentonites from water. <i>Journal of Hazardous Materials</i> , 2006 , 136, 251-7	12.8	6
37	Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. <i>Journal of Hazardous Materials</i> , 2006 , 136, 982-8	12.8	68
36	Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. <i>Journal of Hazardous Materials</i> , 2006 , 137, 68-75	12.8	216
35	Adsorption of volatile organic compounds onto porous clay heterostructures based on spent organobentonites. <i>Clays and Clay Minerals</i> , 2005 , 53, 123-136	2.1	36
34	Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. <i>Environmental Science & Environmental Science </i>	10.3	195
33	Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. <i>Chemosphere</i> , 2005 , 58, 33-40	8.4	107
32	Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant. <i>Chemosphere</i> , 2005 , 60, 1237-45	8.4	56
31	Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties. <i>Chemosphere</i> , 2005 , 61, 116-28	8.4	32
30	Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. <i>Food and Chemical Toxicology</i> , 2005 , 43, 41-8	4.7	120
29	Effects of ionizable organic compounds in different species on the sorption of p-nitroaniline to sediment. <i>Water Research</i> , 2005 , 39, 281-8	12.5	13
28	Photosensitized oxidation of substituted phenols on aluminum phthalocyanine-intercalated organoclay. <i>Environmental Science & Environmental Science & </i>	10.3	83
27	Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite. <i>Langmuir</i> , 2005 , 21, 10602-7	4	51
26	Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. <i>Environmental Science & Environmental Science & Env</i>	10.3	119
25	A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate. <i>Journal of Hazardous Materials</i> , 2005 , 119, 205-11	12.8	40

24	Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures. <i>Journal of Colloid and Interface Science</i> , 2005 , 291, 59-66	9.3	29
23	Solubilization of polycyclic aromatic hydrocarbons by anionicfionionic mixed surfactant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 255, 145-152	5.1	82
22	Application of the partition-limited model for plant uptake of organic chemicals from soil and water. <i>Science of the Total Environment</i> , 2005 , 336, 171-82	10.2	53
21	Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. <i>Journal of Colloid and Interface Science</i> , 2005 , 286, 239-44	9.3	149
20	Sorption Behavior of Polycyclic Aromatic Hydrocarbons in SoilWater System Containing Nonionic Surfactant. <i>Environmental Engineering Science</i> , 2004 , 21, 263-272	2	14
19	Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach. <i>Environmental Science & amp; Technology</i> , 2004 , 38, 489-95	10.3	53
18	Prediction of phenanthrene uptake by plants with a partition-limited model. <i>Environmental Pollution</i> , 2004 , 131, 505-505	9.3	
17	Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. <i>Chemosphere</i> , 2004 , 55, 1169-78	8.4	349
16	Pollution survey of polycyclic aromatic hydrocarbons in surface water of Hangzhou, China. <i>Chemosphere</i> , 2004 , 56, 1085-95	8.4	64
15	Prediction of phenanthrene uptake by plants with a partition-limited model. <i>Environmental Pollution</i> , 2004 , 131, 505-8	9.3	29
14	Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. <i>Water Research</i> , 2004 , 38, 3558-68	12.5	216
13	Interactions of organic contaminants with mineral-adsorbed surfactants. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	124
12	Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. <i>Chemosphere</i> , 2003 , 50, 611-8	8.4	146
11	Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. <i>Chemosphere</i> , 2003 , 53, 459-67	8.4	169
10	A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. <i>Water Research</i> , 2003 , 37, 4792-80	0 ^{12.5}	50
9	Benzene vapor sorption by organobentonites from ambient air. Clays and Clay Minerals, 2002, 50, 421-4	127.1	27
8	Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. <i>Environmental Science & Environmental S</i>	10.3	132
7	Sorption of Phenol, p-Nitrophenol, and Aniline to Dual-Cation Organobentonites from Water. <i>Environmental Science & Dual-Cation Organobentonites from Water</i> .	10.3	191

LIST OF PUBLICATIONS

6	Sorption Behavior of -Nitrophenol on the Interface between Anion-Cation Organobentonite and Water <i>Environmental Science & Eamp; Technology</i> , 2000 , 34, 2997-3002	10.3	128
5	Use of Cetyltrimethylammonium Bromide-Bentonite To Remove Organic Contaminants of Varying Polar Character from Water. <i>Environmental Science & Environmental Science & Environ</i>	10.3	126
4	Sorption of Organobentonites to Some Organic Pollutants in Water. <i>Environmental Science & Environmental Science & Technology</i> , 1997 , 31, 1407-1410	10.3	119
3	Spectrofluorimetric Study of Cyclodextrin Complexation in the Presence of Third and Fourth Components. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 1997 , 27, 279-289		2
2	Comparative Study of Fluorescence Enhancement of Some Fluorescence Systems in Different Ecyclodextrin Derivatives and CyclodextrinBurfactant Media. <i>Microchemical Journal</i> , 1996 , 53, 361-370	4.8	12
1	Determination of mercury in environmental and biological samples by cold vapour atomic absorption spectrometry. <i>Mikrochimica Acta</i> , 1993 , 111, 207-213	5.8	7