Scott Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2120761/publications.pdf Version: 2024-02-01

SCOTT HICCINS

#	Article	IF	CITATIONS
1	Need for harmonized long-term multi-lake monitoring of African Great Lakes. Journal of Great Lakes Research, 2023, 49, 101988.	0.8	16
2	Warming combined with experimental eutrophication intensifies lake phytoplankton blooms. Limnology and Oceanography, 2022, 67, 147-158.	1.6	25
3	Spring coherence in dissolved organic carbon export dominates total coherence in Boreal Shield forested catchments. Environmental Research Letters, 2022, 17, 014048.	2.2	7
4	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. Global Biogeochemical Cycles, 2022, 36, .	1.9	12
5	Dissolved organic carbon affects the occurrence of deep chlorophyll peaks and zooplankton resource use and biomass. Freshwater Biology, 2022, 67, 1357-1369.	1.2	4
6	The Role of Climate and Lake Size in Regulating the Ice Phenology of Boreal Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005898.	1.3	12
7	Phosphorus-only fertilization rapidly initiates large nitrogen-fixing cyanobacteria blooms in two oligotrophic lakes. Environmental Research Letters, 2021, 16, 064078.	2.2	19
8	Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 2021, 11, 521-529.	8.1	87
9	Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. BioScience, 2021, 71, 1011-1027.	2.2	42
10	Hydrological and catchment controls on eventâ€scale dissolved organic carbon dynamics in boreal headwater streams. Hydrological Processes, 2021, 35, e14279.	1.1	14
11	Global data set of long-term summertime vertical temperature profiles in 153 lakes. Scientific Data, 2021, 8, 200.	2.4	7
12	Phytoplankton and cyanobacteria abundances in midâ€⊋1st century lakes depend strongly on future land use and climate projections. Global Change Biology, 2021, 27, 6409-6422.	4.2	27
13	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	1.6	56
14	Integrating Perspectives to Understand Lake Ice Dynamics in a Changing World. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005799.	1.3	48
15	Dissolved organic carbon in eastern Canadian lakes: Novel patterns and relationships with regional and global factors. Science of the Total Environment, 2020, 726, 138400.	3.9	22
16	Long-Term Responses of Nutrient Budgets to Concurrent Climate-Related Stressors in a Boreal Watershed. Ecosystems, 2019, 22, 363-378.	1.6	15
17	Multidecadal carbon sequestration in a headwater boreal lake. Limnology and Oceanography, 2019, 64, S150.	1.6	13
18	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486.	4.7	133

SCOTT HIGGINS

#	Article	IF	CITATIONS
19	Muted responses to Ag accumulation by plankton to chronic and pulse exposure to silver nanoparticles in a boreal lake. Facets, 2019, 4, 566-583.	1.1	2
20	Biological Nitrogen Fixation Prevents the Response of a Eutrophic Lake to Reduced Loading of Nitrogen: Evidence from a 46-Year Whole-Lake Experiment. Ecosystems, 2018, 21, 1088-1100.	1.6	52
21	Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water (Switzerland), 2018, 10, 70.	1.2	51
22	Ecology under lake ice. Ecology Letters, 2017, 20, 98-111.	3.0	320
23	Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada. Science of the Total Environment, 2016, 571, 50-58.	3.9	10
24	A predictive model for water clarity following dreissenid invasion. Biological Invasions, 2016, 18, 1989-2006.	1.2	15
25	Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 2015, 42, 10,773.	1.5	767
26	A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data, 2015, 2, 150008.	2.4	153
27	Harmful Algal Blooms. , 2015, , 873-920.		62
28	Potential for largeâ€bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology, 2014, 95, 2257-2267.	1.5	28
29	Benthic and planktonic primary production along a nutrient gradient in Green Bay, Lake Michigan, USA. Freshwater Science, 2014, 33, 487-498.	0.9	36
30	Urban influences on Cladophora blooms in Lake Ontario. Journal of Great Lakes Research, 2012, 38, 116-123.	0.8	60
31	Nested 3D modeling of the spatial dynamics of nutrients and phytoplankton in a Lake Ontario nearshore zone. Journal of Great Lakes Research, 2012, 38, 171-183.	0.8	37
32	The effect of dreissenid invasions on chlorophyll and the chlorophyll : total phosphorus ratio in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 319-329.	0.7	42
33	Application of a 3D hydrodynamic–biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. Journal of Great Lakes Research, 2011, 37, 41-53.	0.8	94
34	Invasive species early detection and eradication: A response to Horns (2011). Journal of Great Lakes Research, 2011, 37, 595-596.	0.8	2
35	What a difference a species makes: a meta–analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs, 2010, 80, 179-196	2.4	422
36	A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.	0.8	161

SCOTT HIGGINS

#	Article	IF	CITATIONS
37	Great Lakes Cladophora in the 21st century: same algae—different ecosystem. Journal of Great Lakes Research, 2010, 36, 248-255.	0.8	130
38	Primary Production and Carbon Dioxide Metabolic Balance of a Lake-Rich Arctic River Floodplain: Partitioning of Phytoplankton, Epipelon, Macrophyte, and Epiphyton Production Among Lakes on the Mackenzie Delta. Ecosystems, 2009, 12, 853-872.	1.6	53
39	AN ECOLOGICAL REVIEW OF <i>CLADOPHORA GLOMERATA</i> (CHLOROPHYTA) IN THE LAURENTIAN GREAT LAKES ¹ . Journal of Phycology, 2008, 44, 839-854.	1.0	205
40	The collapse of benthic macroalgal blooms in response to selfâ€shading. Freshwater Biology, 2008, 53, 2557-2572.	1.2	34
41	Environmental Controls of Cladophora Growth Dynamics in Eastern Lake Erie: Application of the Cladophora Growth Model (CGM). Journal of Great Lakes Research, 2006, 32, 629-644.	0.8	52
42	Modeling the Growth, Biomass, and Tissue Phosphorus Concentration of Cladophora glomerata in Eastern Lake Erie: Model Description and Field Testing. Journal of Great Lakes Research, 2005, 31, 439-455.	0.8	38
43	The Wall of Green: The Status of Cladophora glomerata on the Northern Shores of Lake Erie's Eastern Basin, 1995–2002. Journal of Great Lakes Research, 2005, 31, 547-563.	0.8	91
44	Planktonic Primary Production in the Offshore Waters of Dreissenid-infested Lake Erie in 1997. Journal of Great Lakes Research, 2005, 31, 50-62.	0.8	28
45	The Community Composition, Distribution, and Nutrient Status of Epilithic Periphyton at Five Rocky Littoral Zone Sites in Lake Malawi, Africa. Journal of Great Lakes Research, 2003, 29, 181-189.	0.8	17
46	Epilithic nitrogen fixation in the rocky littoral zones of Lake Malawi, Africa. Limnology and Oceanography, 2001, 46, 976-982.	1.6	26
47	Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management Lake and Reservoir Management 0 1-33	0.4	17