
Anna S Vikulina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2120523/publications.pdf Version: 2024-02-01

ANNA S VIKILINA

#	Article	IF	CITATIONS
1	A mitochondrial pathway for biosynthesis of lipid mediators. Nature Chemistry, 2014, 6, 542-552.	6.6	130
2	Controlling the Vaterite CaCO ₃ Crystal Pores. Design of Tailor-Made Polymer Based Microcapsules by Hard Templating. Langmuir, 2016, 32, 4229-4238.	1.6	74
3	Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Applied Clay Science, 2021, 205, 106041.	2.6	73
4	Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. New Journal of Chemistry, 2020, 44, 5638-5655.	1.4	72
5	Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic â€~eat-me' signals: cleavage and inhibition of phagocytosis by Lp-PLA2. Cell Death and Differentiation, 2014, 21, 825-835.	5.0	71
6	CaCO3 crystals as versatile carriers for controlled delivery of antimicrobials. Journal of Controlled Release, 2020, 328, 470-489.	4.8	62
7	LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson's disease. Free Radical Research, 2015, 49, 681-691.	1.5	60
8	The mechanism of catalase loading into porous vaterite CaCO ₃ crystals by co-synthesis. Physical Chemistry Chemical Physics, 2018, 20, 8822-8831.	1.3	53
9	Deciphering of Mitochondrial Cardiolipin Oxidative Signaling in Cerebral Ischemia-Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 319-328.	2.4	51
10	Bio-friendly encapsulation of superoxide dismutase into vaterite CaCO3 crystals. Enzyme activity, release mechanism, and perspectives for ophthalmology. Colloids and Surfaces B: Biointerfaces, 2019, 181, 437-449.	2.5	48
11	Porous Alginate Scaffolds Assembled Using Vaterite CaCO3 Crystals. Micromachines, 2019, 10, 357.	1.4	48
12	Self-Assembled Mucin-Containing Microcarriers via Hard Templating on CaCO3 Crystals. Micromachines, 2018, 9, 307.	1.4	40
13	Bioactivity of catalase loaded into vaterite CaCO3 crystals via adsorption and co-synthesis. Materials and Design, 2020, 185, 108223.	3.3	36
14	Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics. Polymers, 2020, 12, 1949.	2.0	36
15	Temperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point. Physical Chemistry Chemical Physics, 2016, 18, 7866-7874.	1.3	35
16	Mucin adsorption on vaterite CaCO3 microcrystals for the prediction of mucoadhesive properties. Journal of Colloid and Interface Science, 2019, 545, 330-339.	5.0	34
17	Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: From submicron to Giant. Materials and Design, 2021, 197, 109220.	3.3	34
18	Hybrid CaCO3-mucin crystals: Effective approach for loading and controlled release of cationic drugs. Materials and Design, 2019, 182, 108020.	3.3	29

Anna S Vikulina

#	Article	IF	CITATIONS
19	Mobility of lysozyme in poly(l-lysine)/hyaluronic acid multilayer films. Colloids and Surfaces B: Biointerfaces, 2016, 147, 343-350.	2.5	28
20	Hybrids of Polymer Multilayers, Lipids, and Nanoparticles: Mimicking the Cellular Microenvironment. Langmuir, 2019, 35, 8565-8573.	1.6	27
21	Temperature-induced molecular transport through polymer multilayers coated with PNIPAM microgels. Physical Chemistry Chemical Physics, 2015, 17, 12771-12777.	1.3	25
22	Internal Structure of Matrix-Type Multilayer Capsules Templated on Porous Vaterite CaCO3 Crystals as Probed by Staining with a Fluorescence Dye. Micromachines, 2018, 9, 547.	1.4	23
23	Binding Mechanism of the Model Charged Dye Carboxyfluorescein to Hyaluronan/Polylysine Multilayers. ACS Applied Materials & Interfaces, 2017, 9, 38908-38918.	4.0	22
24	Cooling-Triggered Release from Mesoporous Poly(<i>N</i> -isopropylacrylamide) Microgels at Physiological Conditions. ACS Applied Materials & Interfaces, 2020, 12, 57401-57409.	4.0	22
25	Structure of the complex of cytochrome c with cardiolipin in non-polar environment. Chemistry and Physics of Lipids, 2018, 214, 35-45.	1.5	20
26	Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO ₃ as Templates. ACS Applied Materials & Interfaces, 2021, 13, 3259-3269.	4.0	20
27	Biodegradation-Resistant Multilayers Coated with Gold Nanoparticles. Toward a Tailor-made Artificial Extracellular Matrix. ACS Applied Materials & Interfaces, 2016, 8, 24345-24349.	4.0	19
28	Inter-protein interactions govern protein loading into porous vaterite CaCO ₃ crystals. Physical Chemistry Chemical Physics, 2020, 22, 9713-9722.	1.3	19
29	A "Cellâ€Friendly―Window for the Interaction of Cells with Hyaluronic Acid/Polyâ€≺scp>l‣ysine Multilayers. Macromolecular Bioscience, 2018, 18, 1700319.	2.1	18
30	Porous Alginate Scaffolds Designed by Calcium Carbonate Leaching Technique. Advanced Functional Materials, 2022, 32, .	7.8	14
31	Cytochrome c–cardiolipin complex in a nonpolar environment. Biochemistry (Moscow), 2015, 80, 1298-1302.	0.7	13
32	Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. Nanomaterials, 2021, 11, 2502.	1.9	11
33	Immobilization of Antioxidant Enzyme Catalase on Porous Hybrid Microparticles of Vaterite with Mucin. Advanced Engineering Materials, 2022, 24, .	1.6	7
34	Hybrid Mucinâ€Vaterite Microspheres for Delivery of Proteolytic Enzyme Chymotrypsin. Macromolecular Bioscience, 2022, 22, e2200005.	2.1	6
35	Mesoporous One-Component Gold Microshells as 3D SERS Substrates. Biosensors, 2021, 11, 380.	2.3	5
36	Editorial for the Special Issue on Self-Assembly of Polymers. Micromachines, 2019, 10, 519.	1.4	0