Jiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212022/publications.pdf

Version: 2024-02-01

		471371	501076
59	912	17	28
papers	citations	h-index	g-index
6.1	C1	6.1	1164
61	61	61	1164
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Fluorescent reconstitution on deposition of PM _{2.5} in lung and extrapulmonary organs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2488-2493.	3.3	105
2	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab on A Chip, 2011, 11, 2312.	3.1	79
3	Breakup of double emulsions in constrictions. Soft Matter, 2011, 7, 2345.	1.2	52
4	Evaluation on Applicability of Reynolds Equation for Squared Transverse Roughness Compared to CFD. Journal of Tribology, 2007, 129, 963-967.	1.0	44
5	Breakup of Double Emulsion Droplets in a Tapered Nozzle. Langmuir, 2011, 27, 4324-4327.	1.6	38
6	Gas-core triple emulsions for ultrasound triggered release. Soft Matter, 2013, 9, 38-42.	1.2	37
7	Drag Reduction by Bubble-Covered Surfaces Found in PDMS Microchannel through Depressurization. Langmuir, 2016, 32, 4815-4819.	1.6	29
8	USB-driven microfluidic chips on printed circuit boards. Lab on A Chip, 2014, 14, 860.	3.1	28
9	Fabrication of Ceramic Microspheres by Diffusion-Induced Sol–Gel Reaction in Double Emulsions. ACS Applied Materials & Interfaces, 2013, 5, 11489-11493.	4.0	24
10	Sonication–Microfluidics for Fabrication of Nanoparticle-Stabilized Microbubbles. Langmuir, 2014, 30, 4262-4266.	1.6	24
11	Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops. Lab on A Chip, 2014, 14, 4334-4337.	3.1	22
12	Droplet Microâ€Reactor for Internal Gelation to Fabricate ZrO ₂ Ceramic Microspheres. Journal of the American Ceramic Society, 2017, 100, 41-48.	1.9	22
13	Relationship between the microstructure and properties of a peak aged Cu–Ni–Co–Si alloy. Materials Science and Technology, 2019, 35, 606-614.	0.8	22
14	Growth of Bubbles on a Solid Surface in Response to a Pressure Reduction. Langmuir, 2014, 30, 4223-4228.	1.6	21
15	Thin lubrication film around moving bubbles measured in square microchannels. Applied Physics Letters, 2015, 107, .	1.5	21
16	ZrO ₂ Matrix Toughened Ceramic Materialâ€8trength and Toughness. Advanced Engineering Materials, 2022, 24, .	1.6	20
17	Microfluidic Generation of High-Viscosity Droplets by Surface-Controlled Breakup of Segment Flow. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21059-21064.	4.0	18
18	Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20023-20027.	3.3	17

#	Article	IF	Citations
19	Formation and Development of Iridescent Rings Around Cavitation Erosion Pits. Tribology Letters, 2013, 52, 495-500.	1.2	17
20	Adhesion of moving droplets in microchannels. Applied Physics Letters, 2013, 103, .	1.5	17
21	Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres. Langmuir, 2016, 32, 7882-7887.	1.6	16
22	Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry. Scientific Reports, 2017, 7, 15253.	1.6	16
23	Microfluidic fabrication of ceramic microspheres with controlled morphologies. Journal of the American Ceramic Society, 2018, 101, 3787-3796.	1.9	14
24	"Fluid bearing―effect of enclosed liquids in grooves on drag reduction in microchannels. Physical Review Fluids, 2016, 1, .	1.0	14
25	Altering Emulsion Stability with Heterogeneous Surface Wettability. Scientific Reports, 2016, 6, 26953.	1.6	13
26	Microfluidic production of porous carbon spheres with tunable size and pores. Journal of Colloid and Interface Science, 2016, 461, 168-172.	5.0	12
27	Phase inversion of slug flow on step surface to form high viscosity droplets in microchannel. Applied Physics Letters, 2017, 110, 181601.	1.5	12
28	Scalable preparation of hollow ZrO2 microspheres through a liquid-liquid phase reunion assisted sol-gel method. Ceramics International, 2020, 46, 14188-14194.	2.3	12
29	Fabrication of sharp-edged 3D microparticles <i>via</i> folded PDMS microfluidic channels. Lab on A Chip, 2021, 22, 148-155.	3.1	10
30	Study of Drag Forces on a Designed Surface in Bubbly Water Lubrication Using Electrolysis. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 1383-1389.	0.8	9
31	Affected zone generated around the erosion pit on carbon steel surface at the incipient stage of vibration cavitation. Science Bulletin, 2008, 53, 943-947.	4.3	9
32	Thin-film profile around long bubbles in square microchannels measured by chromatic interference method. Applied Physics Letters, 2016, 109, .	1.5	9
33	Effects of altered blood flow induced by the muscle pump on thrombosis in a microfluidic venous valve model. Lab on A Chip, 2020, 20, 2473-2481.	3.1	9
34	Sizeâ€Dependent Phase Separation in Emulsion Droplets. ChemPhysChem, 2018, 19, 1995-1998.	1.0	8
35	Hydrodynamically Formed Uniform Thick Coatings on Microspheres. Small, 2018, 14, e1800613.	5.2	8
36	Margination mechanism of stiffened red blood cell in microchannel with different cross-section shapes. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	7

#	Article	IF	CITATIONS
37	Microfluidic Assembly of Microblocks into Interlocked Structures for Enhanced Strength and Toughness. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 7261-7269.	4.0	7
38	Electrostatic wrapping of a microfiber around a curved particle. Soft Matter, 2021, 17, 3609-3618.	1.2	6
39	Flow field around bubbles on formation of air embolism in small vessels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
40	Film coating on a small sphere crossing an oil-water interface. Physical Review Fluids, 2018, 3, .	1.0	6
41	Interventional Microbubble Enhanced Sonothrombolysis on Left Ventricular Assist Devices. Advanced Science, 2022, 9, .	5.6	6
42	Cavitation Erosion on Solid Polymers of Polytetrafluoroethelyene. Tribology Letters, 2012, 47, 17-20.	1.2	5
43	Drainage of lubrication film around stuck bubbles in vertical capillaries. Applied Physics Letters, 2019, 115, .	1.5	5
44	Binding properties of flowing fibrin-targeted microbubbles evaluated with a thrombus-embedded microchannel. Lab on A Chip, 2022, 22, 2292-2298.	3.1	5
45	Long range interactions between micro spheres and alloy surfaces in water changed by ion implantation. Applied Surface Science, 2011, 258, 474-477.	3.1	4
46	Influence of microparticle size on cavitation noise during ultrasonic vibration. AIP Advances, 2015, 5, 097145.	0.6	4
47	Dielectric tetrahedrons as terahertz resonators switched from perfect absorber to reflector. Scientific Reports, 2020, 10, 17134.	1.6	4
48	A microfluidic bleeding model to investigate the effects of blood flow shear on microvascular hemostasis. Friction, 2022, 10, 128-141.	3.4	4
49	Investigation on Surface Forces Measurement Using Force-Balanced MEMS Sensor., 2006,,.		3
50	Cleaning of Fluid-Infused Surfaces in Microchannels. Langmuir, 2018, 34, 12532-12537.	1.6	3
51	Concentric ripples of lubrication film in electrowetting. Applied Physics Letters, 2018, 113, .	1.5	2
52	Tailoring <scp>3D</scp> shapes of polyhedral milliparticles by adjusting orthogonal projection in a microfluidic channel. Journal of Polymer Science, 2022, 60, 1750-1757.	2.0	2
53	Lubrication for Transporting Heavy Objects in the History. Tribology Online, 2016, 11, 242-248.	0.2	1
54	Cavitation noise from elastic response of metals in ultrasonic cavitation erosion. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 836-841.	1.0	1

#	Article	IF	CITATIONS
55	Fabricating High-viscosity Droplets using Microfluidic Capillary Device with Phase-inversion Co-flow Structure. Journal of Visualized Experiments, 2018, , .	0.2	1
56	Bubble Collisions in Microchannels Affected by Hydrodynamic Pressures. Tribology Online, 2016, 11, 281-287.	0.2	1
57	Behaviors of blood cells in microfluidic devices and sorting technology. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2016, 46, 684-696.	0.3	1
58	Cavitation in Negative-pressure Microcapillary Devices with Tapered Constrictions: Experiment and Numerical Simulation. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13,	0.4	0
59	Coating Fabrication: Hydrodynamically Formed Uniform Thick Coatings on Microspheres (Small) Tj ETQq1 1 0.7	84314 rgB	T / gverlock 1