Madhav Prakash Thakur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2120029/publications.pdf

Version: 2024-02-01

58 papers

4,153 citations

201658 27 h-index 58 g-index

61 all docs

61 docs citations

61 times ranked

5617 citing authors

#	Article	IF	CITATIONS
1	Contrasting effects of soil microbial interactions on growth–defence relationships between early― and midâ€successional plant communities. New Phytologist, 2022, 233, 1345-1357.	7.3	22
2	Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 2022, 25, 555-569.	6.4	85
3	Foliar herbivory on plants creates soil legacy effects that impact future insect herbivore growth via changes in plant community biomass allocation. Functional Ecology, 2022, 36, 1047-1062.	3 . 6	3
4	Temperature-dependent trade-offs in maternal investments: An experimental test with two closely related soil microarthropods. European Journal of Soil Biology, 2022, 110, 103402.	3.2	3
5	Warming effects on grassland productivity depend on plant diversity. Global Ecology and Biogeography, 2022, 31, 588-598.	5 . 8	13
6	Phenological mismatches between above- and belowground plant responses to climate warming. Nature Climate Change, 2022, 12, 97-102.	18.8	49
7	Soil P availability and mycorrhizal type determine root exudation in sub-tropical forests. Soil Biology and Biochemistry, 2022, 171, 108722.	8.8	9
8	Biotic responses to climate extremes in terrestrial ecosystems. IScience, 2022, 25, 104559.	4.1	18
9	Resilience of rhizosphere microbial predators and their prey communities after an extreme heat event. Functional Ecology, 2021, 35, 216-225.	3 . 6	13
10	Invasive earthworms reduce chemical defense and increase herbivory and pathogen infection in native trees. Journal of Ecology, 2021, 109, 763-775.	4.0	8
11	Do Invasive Earthworms Affect the Functional Traits of Native Plants?. Frontiers in Plant Science, 2021, 12, 627573.	3.6	7
12	Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos, 2021, 130, 766-780.	2.7	21
13	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	5.3	29
14	The Tarnished Silver Lining of Extreme Climatic Events. Trends in Ecology and Evolution, 2021, 36, 384-385.	8.7	3
15	Plant–Soil Feedbacks and Temporal Dynamics of Plant Diversity–Productivity Relationships. Trends in Ecology and Evolution, 2021, 36, 651-661.	8.7	74
16	Disturbance regulates the density–bodyâ€mass relationship of soil fauna. Ecological Applications, 2020, 30, e02019.	3.8	3
17	Towards an integrative understanding of soil biodiversity. Biological Reviews, 2020, 95, 350-364.	10.4	97
18	Soil chemistry turned upside down: a metaâ€analysis of invasive earthworm effects on soil chemical properties. Ecology, 2020, 101, e02936.	3.2	49

#	Article	IF	CITATIONS
19	Climate changeâ€mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology, 2020, 26, 6685-6701.	9.5	114
20	Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biology and Biochemistry, 2020, 150, 107999.	8.8	5
21	Towards a General Understanding of Bacterial Interactions. Trends in Microbiology, 2020, 28, 783-785.	7.7	26
22	Climate Extremes, Rewilding, and the Role of Microhabitats. One Earth, 2020, 2, 506-509.	6.8	22
23	The role of predators in driving warming-prey diversity relationships: An invertebrate perspective. Basic and Applied Ecology, 2020, 47, 23-34.	2.7	5
24	Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biology Letters, 2020, 16, 20190770.	2.3	26
25	Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biology and Biochemistry, 2020, 147, 107847.	8.8	38
26	Microbial invasions in terrestrial ecosystems. Nature Reviews Microbiology, 2019, 17, 621-631.	28.6	74
27	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	12.6	248
28	Trophic Regulations of the Soil Microbiome. Trends in Microbiology, 2019, 27, 771-780.	7.7	232
29	Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 2019, 135, 184-193.	8.8	64
30	Interactions between functionally diverse fungal mutualists inconsistently affect plant performance and competition. Oikos, 2019, 128, 1136-1146.	2.7	10
31	Earthworms modulate the effects of climate warming on the taxon richness of soil meso- and macrofauna in an agricultural system. Agriculture, Ecosystems and Environment, 2019, 278, 72-80.	5.3	23
32	Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. Advances in Ecological Research, 2019, , 25-58.	2.7	44
33	Land use modulates the effects of climate change on density but not community composition of Collembola. Soil Biology and Biochemistry, 2019, 138, 107598.	8.8	22
34	A niche for ecosystem multifunctionality in global change research. Global Change Biology, 2019, 25, 763-774.	9.5	80
35	Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 2018, 8, 75-78.	18.8	117
36	Invasive earthworms erode soil biodiversity: A metaâ€analysis. Journal of Animal Ecology, 2018, 87, 162-172.	2.8	91

#	Article	lF	Citations
37	Temperature effects on prey and basal resources exceed that of predators in an experimental community. Ecology and Evolution, 2018, 8, 12670-12680.	1.9	13
38	The Dark Side of Animal Phenology. Trends in Ecology and Evolution, 2018, 33, 898-901.	8.7	33
39	Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 2017, 7, 44641.	3.3	309
40	Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162570.	2.6	55
41	Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Science Advances, 2017, 3, e1700866.	10.3	50
42	Environmental Filtering, Niche Construction, and Trait Variability: The Missing Discussion. Trends in Ecology and Evolution, 2017, 32, 884-886.	8.7	43
43	Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change, 2017, 7, 895-900.	18.8	75
44	Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia, 2017, 65, 29-42.	1.2	28
45	The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a metaâ€analysis). Global Change Biology, 2017, 23, 1065-1074.	9.5	107
46	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	4.0	169
47	Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. Journal of Vegetation Science, 2016, 27, 1061-1070.	2.2	107
48	Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. Journal of Plant Ecology, 2016, , rtw066.	2.3	3
49	Cascading effects of belowground predators on plant communities are densityâ€dependent. Ecology and Evolution, 2015, 5, 4300-4314.	1.9	20
50	Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21, 4076-4085.	9.5	134
51	Plant community composition determines the strength of top-down control in a soil food web motif. Scientific Reports, 2015, 5, 9134.	3.3	24
52	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	27.8	1,032
53	Interactions between microbial-feeding and predatory soil fauna trigger N2O emissions. Soil Biology and Biochemistry, 2014, 70, 256-262.	8.8	29
54	Productivity affects the density–body mass relationship of soil fauna communities. Soil Biology and Biochemistry, 2014, 72, 203-211.	8.8	11

#	Article	IF	CITATIONS
55	Disturbance–diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh. Soil Biology and Biochemistry, 2014, 78, 30-37.	8.8	18
56	Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 2014, 175, 713-723.	2.0	80
57	Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia, 2014, 57, 57-60.	1.2	11
58	Soil invertebrate fauna affect <scp><scp>N₂O</scp></scp> emissions from soil. Global Change Biology, 2013, 19, 2814-2825.	9.5	54