Ke-Ding Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2119943/publications.pdf

Version: 2024-02-01

		38742		58581
128	7,955	50		82
papers	citations	h-index		g-index
			. '	
214	214	214		4219
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	A critical review of sulfate aerosol formation mechanisms during winter polluted periods. Journal of Environmental Sciences, 2023, 123, 387-399.	6.1	20
2	Progress in quantitative research on the relationship between atmospheric oxidation and air quality. Journal of Environmental Sciences, 2023, 123, 350-366.	6.1	5
3	Particle hygroscopicity inhomogeneity and its impact on reactive uptake. Science of the Total Environment, 2022, 811, 151364.	8.0	8
4	Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (RO _{<i>\>\</i>} \angle &\defta \chin\ \text{NO <sub} 1035-1057.<="" 2022,="" 22,="" and="" atmospheric="" boundary="" chemistry="" in="" layer.="" lower="" physics,="" td="" the=""><td>o&arap;gt;</td><td>3</td></sub}>	o& ara p;gt;	3
5	N ₂ O ₅ uptake onto saline mineral dust: a potential missing source of tropospheric ClNO ₂ in inland China. Atmospheric Chemistry and Physics, 2022, 22, 1845-1859.	4.9	7
6	Interpretation of NO ₃ –N ₂ O _{observation via steady state in high-aerosol air mass: the impact of equilibrium coefficient in ambient conditions. Atmospheric Chemistry and Physics, 2022, 22, 3525-3533.}	&aդր;gt;5	
7	Atmospheric measurements at Mt. Tai – Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 3149-3167.	4.9	12
8	Reduced Aerosol Uptake of Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to Volatile Organic Compounds. Environmental Science and Technology Letters, 2022, 9, 22-29.	8.7	16
9	Observation-Based Estimations of Relative Ozone Impacts by Using Volatile Organic Compounds Reactivities. Environmental Science and Technology Letters, 2022, 9, 10-15.	8.7	10
10	Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China. Science of the Total Environment, 2022, 838, 155924.	8.0	2
11	Anthropogenic monoterpenes aggravating ozone pollution. National Science Review, 2022, 9, .	9.5	17
12	OH and HO ₂ radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Chemistry and Physics, 2022, 22, 7005-7028.	4.9	19
13	Strong impacts of biomass burning, nitrogen fertilization, and fine particles on gas-phase hydrogen peroxide (H2O2). Science of the Total Environment, 2022, 843, 156997.	8.0	2
14	Cross-regional transport of PM2.5 nitrate in the Pearl River Delta, China: Contributions and mechanisms. Science of the Total Environment, 2021, 753, 142439.	8.0	18
15	Elucidating the effect of HONO on O3 pollution by a case study in southwest China. Science of the Total Environment, 2021, 756, 144127.	8.0	23
16	Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 2021, 248, 118230.	4.1	12
17	Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi'an, China. Atmospheric Chemistry and Physics, 2021, 21, 4939-4958.	4.9	52
18	Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments. Environmental Science & Environmental Science	10.0	26

#	Article	IF	CITATIONS
19	Uptake of Waterâ€soluble Gasâ€phase Oxidation Products Drives Organic Particulate Pollution in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091351.	4.0	24
20	Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. Bulletin of the American Meteorological Society, 2021, 102, E2012-E2033.	3.3	14
21	Vertical Profiles of Volatile Organic Compounds in Suburban Shanghai. Advances in Atmospheric Sciences, 2021, 38, 1177-1187.	4.3	10
22	Thermal dissociation cavity-enhanced absorption spectrometer for measuring NO ₂ , RO ₂ NO ₂ NO ₂ in the atmosphere. Atmospheric Measurement Techniques, 2021, 14, 4033-4051.	3.1	8
23	Observations and modeling of OH and HO2 radicals in Chengdu, China in summer 2019. Science of the Total Environment, 2021, 772, 144829.	8.0	28
24	New particle formation and its CCN enhancement in the Yangtze River Delta under the control of continental and marine air masses. Atmospheric Environment, 2021, 254, 118400.	4.1	5
25	Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 2021, 771, 145306.	8.0	27
26	Impact of aerosolâ€"radiation interaction on new particle formation. Atmospheric Chemistry and Physics, 2021, 21, 9995-10004.	4.9	9
27	Assessing the Ratios of Formaldehyde and Glyoxal to NO ₂ as Indicators of O ₃ –NO _{<i>x</i>} –VOC Sensitivity. Environmental Science & Technology, 2021, 55, 10935-10945.	10.0	27
28	Critical Role of Simultaneous Reduction of Atmospheric Odd Oxygen for Winter Haze Mitigation. Environmental Science & Environm	10.0	21
29	An Observational Based Modeling of the Surface Layer Particulate Nitrate in the North China Plain During Summertime. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035623.	3.3	8
30	A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 13713-13727.	4.9	11
31	Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Science of the Total Environment, 2021, 788, 147712.	8.0	54
32	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environmental Pollution, 2021, 287, 117624.	7. 5	13
33	Characterizing nitrate radical budget trends in Beijing during 2013–2019. Science of the Total Environment, 2021, 795, 148869.	8.0	17
34	Direct evidence of local photochemical production driven ozone episode in Beijing: A case study. Science of the Total Environment, 2021, 800, 148868.	8.0	21
35	Agricultural Fertilization Aggravates Air Pollution by Stimulating Soil Nitrous Acid Emissions at High Soil Moisture. Environmental Science & Environm	10.0	27
36	Chemical Production of Oxygenated Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone Production. Environmental Science & Environmental Science & 2021, 55, 13718-13727.	10.0	31

#	Article	IF	CITATIONS
37	Measurement of gaseous and particulate formaldehyde in the Yangtze River Delta, China. Atmospheric Environment, 2020, 224, 117114.	4.1	16
38	NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Environment, 2020, 224, 117180.	4.1	28
39	An explicit study of local ozone budget and NOx-VOCs sensitivity in Shenzhen China. Atmospheric Environment, 2020, 224, 117304.	4.1	85
40	Field measurement of the organic peroxy radicals by the low-pressure reactor plus laser-induced fluorescence spectroscopy. Chinese Chemical Letters, 2020, 31, 2799-2802.	9.0	8
41	Observations of glyoxal and methylglyoxal in a suburban area of the Yangtze River Delta, China. Atmospheric Environment, 2020, 238, 117727.	4.1	10
42	The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 2020, 242, 117801.	4.1	72
43	Heterogeneous N ₂ O ₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters. Atmospheric Chemistry and Physics, 2020, 20, 4367-4378.	4.9	33
44	Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 2020, 20, 2161-2175.	4.9	74
45	Field Determination of Nitrate Formation Pathway in Winter Beijing. Environmental Science & Emp; Technology, 2020, 54, 9243-9253.	10.0	69
46	Wintertime N2O5 uptake coefficients over the North China Plain. Science Bulletin, 2020, 65, 765-774.	9.0	27
47	No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014. Environmental Science & Environmental Science & 2020, 54, 5973-5979.	10.0	67
48	Model bias in simulating major chemical components of PM _{2.5} in China. Atmospheric Chemistry and Physics, 2020, 20, 12265-12284.	4.9	25
49	Influence of aerosol copper on HO ₂ uptake: a novel parameterized equation. Atmospheric Chemistry and Physics, 2020, 20, 15835-15850.	4.9	14
50	Calculation of maximum incremental reactivity scales based on typical megacities in China. Chinese Science Bulletin, 2020, 65, 610-621.	0.7	4
51	Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. National Science Review, 2019, 6, 579-594.	9.5	123
52	Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environmental Science & Environmenta	10.0	147
53	Monitoring Ambient Nitrate Radical by Open-Path Cavity-Enhanced Absorption Spectroscopy. Analytical Chemistry, 2019, 91, 10687-10693.	6.5	12
54	Measurements of HO2 uptake coefficient on aqueous (NH4)2SO4 aerosol using aerosol flow tube with LIF system. Chinese Chemical Letters, 2019, 30, 2236-2240.	9.0	16

#	Article	IF	CITATIONS
55	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	8.0	29
56	Winter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site. Science of the Total Environment, 2019, 685, 85-95.	8.0	91
57	Experimental budgets of OH, HO ₂ , and RO ₂ radicals and implications for ozone formation in the Pearl River Delta in China 2014. Atmospheric Chemistry and Physics, 2019, 19, 7129-7150.	4.9	92
58	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
59	Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation. Atmospheric Chemistry and Physics, 2019, 19, 3493-3513.	4.9	145
60	A Comprehensive Model Test of the HONO Sources Constrained to Field Measurements at Rural North China Plain. Environmental Science & Echnology, 2019, 53, 3517-3525.	10.0	81
61	Spatial characteristics of the nighttime oxidation capacity in the Yangtze River Delta, China. Atmospheric Environment, 2019, 208, 150-157.	4.1	22
62	Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai. Atmosphere, 2019, 10, 760.	2.3	8
63	Sources and abatement mechanisms of VOCs in southern China. Atmospheric Environment, 2019, 201, 28-40.	4.1	73
64	Observations of OH Radical Reactivity in Field Studies. Acta Chimica Sinica, 2019, 77, 613.	1.4	11
65	Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain. Environmental Science and Technology Letters, 2018, 5, 160-166.	8.7	165
66	Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Science of the Total Environment, 2018, 636, 775-786.	8.0	230
67	Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation. Atmospheric Chemistry and Physics, 2018, 18, 4349-4359.	4.9	67
68	Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model. Science China Earth Sciences, 2018, 61, 23-32.	5.2	30
69	Intercomparison of in situ CRDS and CEAS for measurements of atmospheric N2O5 in Beijing, China. Science of the Total Environment, 2018, 613-614, 131-139.	8.0	11
70	Simulation of organic nitrates in Pearl River Delta in 2006 and the chemical impact on ozone production. Science China Earth Sciences, 2018, 61, 228-238.	5. 2	9
71	Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO ₂ . Atmospheric Measurement Techniques, 2018, 11, 4531-4543.	3.1	50
72	Efficient N ₂ O ₅ uptake and NO ₃ oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 9705-9721.	4.9	64

#	Article	IF	CITATIONS
73	Heterogeneous N ₂ O ₅ uptake coefficient and production yield of ClNO ₂ in polluted northern China: roles of aerosol water content and chemical composition. Atmospheric Chemistry and Physics, 2018, 18, 13155-13171.	4.9	67
74	Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO ₂ and subsequent gas- and particle-phase Cl–VOC production. Atmospheric Chemistry and Physics, 2018, 18, 13013-13030.	4.9	54
75	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	4.9	62
76	Fast particulate nitrate formation via N _{O₅ uptake aloft in winter in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 10483-10495.}	4.9	82
77	Wintertime photochemistry in Beijing: observations of RO _{radical concentrations in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 2018, 18, 12391-12411.}	4.9	177
78	Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities. Science Bulletin, 2018, 63, 1067-1076.	9.0	116
79	Ozone formation and key VOCs in typical Chinese city clusters. Chinese Science Bulletin, 2018, 63, 1130-1141.	0.7	48
80	Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain. Atmospheric Research, 2017, 188, 55-63.	4.1	20
81	Strong deviations from the NO-NO2-O3 photostationary state in the Pearl River Delta: Indications of active peroxy radical and chlorine radical chemistry. Atmospheric Environment, 2017, 163, 22-34.	4.1	17
82	High N ₂ O ₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science and Technology Letters, 2017, 4, 416-420.	8.7	167
83	Direct emission of nitrous acid (HONO) from gasoline cars in China determined by vehicle chassis dynamometer experiments. Atmospheric Environment, 2017, 169, 89-96.	4.1	37
84	High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. Environmental Science & Echnology, 2017, 51, 9588-9595.	10.0	78
85	Model simulation of NO 3 , N 2 O 5 and ClNO 2 at a rural site in Beijing during CAREBeijing-2006. Atmospheric Research, 2017, 196, 97-107.	4.1	35
86	OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget. Atmospheric Chemistry and Physics, 2017, 17, 645-661.	4.9	63
87	Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity. Atmospheric Chemistry and Physics, 2017, 17, 11727-11777.	4.9	129
88	Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO ₂ and RO ₂ radicals. Atmospheric Chemistry and Physics, 2017, 17, 663-690.	4.9	239
89	How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China. Atmospheric Chemistry and Physics, 2017, 17, 7127-7142.	4.9	60
90	Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO ₃ and N ₂ 0 ₅ : experimental setup, lab characterizations, and field applications in a polluted urban environment. Atmospheric Measurement Techniques, 2017, 10, 1465-1479.	3.1	65

#	Article	IF	CITATIONS
91	A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor. Atmospheric Measurement Techniques, 2016, 9, 423-440.	3.1	93
92	Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 2016, 16, 14959-14977.	4.9	146
93	Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	5
94	Observation of atmospheric peroxides during Wangdu CampaignÂ2014 at a rural site in the North China Plain. Atmospheric Chemistry and Physics, 2016, 16, 10985-11000.	4.9	27
95	In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell. Journal of Environmental Sciences, 2016, 43, 273-284.	6.1	26
96	Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production. Atmospheric Chemistry and Physics, 2015, 15, 1289-1298.	4.9	36
97	Response to Comment on "Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere― Science, 2015, 348, 1326-1326.	12.6	10
98	Chemical characteristics of PM10 during the summer in the mega-city Guangzhou, China. Atmospheric Research, 2014, 137, 25-34.	4.1	32
99	Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011. Journal of Environmental Sciences, 2014, 26, 23-36.	6.1	105
100	Airborne Trifluoroacetic Acid and Its Fraction from the Degradation of HFC-134a in Beijing, China. Environmental Science & Env	10.0	42
101	Missing Gas-Phase Source of HONO Inferred from Zeppelin Measurements in the Troposphere. Science, 2014, 344, 292-296.	12.6	154
102	Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nature Geoscience, 2014, 7, 559-563.	12.9	110
103	Chemical characteristics of size-resolved aerosols in winter in Beijing. Journal of Environmental Sciences, 2014, 26, 1641-1650.	6.1	27
104	Response to Comment on "Airborne Trifluoroacetic Acid and Its Fraction from the Degradation of HFC-134a in Beijing, China″. Environmental Science & Eamp; Technology, 2014, 48, 9949-9949.	10.0	1
105	Daytime HONO formation in the suburban area of the megacity Beijing, China. Science China Chemistry, 2014, 57, 1032-1042.	8.2	53
106	The balances of mixing ratios and segregation intensity: a case study from the field (ECHO 2003). Atmospheric Chemistry and Physics, 2014, 14, 10333-10362.	4.9	8
107	Nighttime observation and chemistry of HO _x in the Pearl River Delta and Beijing in summer 2006. Atmospheric Chemistry and Physics, 2014, 14, 4979-4999.	4.9	40
108	Variations of ground-level O ₃ and its precursors in Beijing in summertime between 2005 and 2011. Atmospheric Chemistry and Physics, 2014, 14, 6089-6101.	4.9	168

#	Article	IF	CITATIONS
109	Modeling of HCHO and CHOCHO at a semi-rural site in southern China during the PRIDE-PRD2006 campaign. Atmospheric Chemistry and Physics, 2014, 14, 12291-12305.	4.9	59
110	OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2014, 14, 7895-7908.	4.9	38
111	Characteristics of Aerosol Optical Properties and Their Chemical Apportionments during CAREBeijing 2006. Aerosol and Air Quality Research, 2014, 14, 1431-1442.	2.1	27
112	Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nature Geoscience, 2013, 6, 1023-1026.	12.9	132
113	An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography. Journal of Environmental Sciences, 2013, 25, 895-907.	6.1	18
114	Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO ₂ concentrations in summer 2006. Atmospheric Chemistry and Physics, 2013, 13, 1057-1080.	4.9	188
115	Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008. Atmospheric Chemistry and Physics, 2013, 13, 6289-6304.	4.9	25
116	MAX-DOAS measurements of NO ₂ , HCHO and CHOCHO at a rural site in Southern China. Atmospheric Chemistry and Physics, 2013, 13, 2133-2151.	4.9	113
117	Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmospheric Chemistry and Physics, 2012, 12, 1497-1513.	4.9	211
118	Observation and modelling of OH and HO ₂ concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 1541-1569.	4.9	269
119	Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign. Atmospheric Chemistry and Physics, 2011, 11, 6911-6929.	4.9	69
120	Detection of HO ₂ by laser-induced fluorescence: calibration and interferences from RO ₂ radicals. Atmospheric Measurement Techniques, 2011, 4, 1209-1225.	3.1	199
121	Atmospheric OH reactivities in the Pearl River Delta $\hat{a}\in$ China in summer 2006: measurement and model results. Atmospheric Chemistry and Physics, 2010, 10, 11243-11260.	4.9	231
122	Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system. Atmospheric Chemistry and Physics, 2010, 10, 4423-4437.	4.9	102
123	Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Science China Chemistry, 2010, 53, 651-663.	8.2	42
124	Oxidant (O $<$ sub $>$ 3 $<$ /sub $>$ + NO $<$ sub $>$ 2 $<$ /sub $>$) production processes and formation regimes in Beijing. Journal of Geophysical Research, 2010, 115, .	3.3	72
125	Correction to "Oxidant (O3+NO2) production processes and formation regimes in Beijing― Journal of Geophysical Research, 2010, 115, .	3.3	8
126	Formation of submicron sulfate and organic aerosols in the outflow from the urban region of the Pearl River Delta in China. Atmospheric Environment, 2009, 43, 3754-3763.	4.1	60

#	Article	IF	CITATIONS
127	Amplified Trace Gas Removal in the Troposphere. Science, 2009, 324, 1702-1704.	12.6	550
128	Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols. Atmospheric Chemistry and Physics, 2008, 8, 6755-6773.	4.9	163