Siobhan M Brady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2119361/publications.pdf Version: 2024-02-01

		61857	38300
101	10,191	43	95
papers	citations	h-index	g-index
117	117	117	12192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. Science, 2007, 318, 801-806.	6.0	1,048
2	The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant Journal, 2005, 43, 153-163.	2.8	707
3	Cell Identity Mediates the Response of <i>Arabidopsis</i> Roots to Abiotic Stress. Science, 2008, 320, 942-945.	6.0	700
4	An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 2015, 517, 571-575.	13.7	636
5	The Plant Vascular System: Evolution, Development and Functions ^F . Journal of Integrative Plant Biology, 2013, 55, 294-388.	4.1	553
6	Plant developmental responses to climate change. Developmental Biology, 2016, 419, 64-77.	0.9	398
7	Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature, 2010, 466, 128-132.	13.7	385
8	Comprehensive developmental profiles of gene activity in regions and subregions of the <i>Arabidopsis</i> seed. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E435-44.	3.3	381
9	Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.	3.3	325
10	The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant Journal, 2003, 34, 67-75.	2.8	312
11	Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model. Plant Physiology, 2014, 166, 455-469.	2.3	309
12	High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types. Cell Reports, 2019, 27, 2241-2247.e4.	2.9	279
13	Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. Plant Cell, 2018, 30, 15-36.	3.1	226
14	Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 2018, 563, 259-264.	13.7	222
15	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	3.5	186
16	PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants, 2015, 1, 15089.	4.7	160
17	A steleâ€enriched gene regulatory network in the Arabidopsis root. Molecular Systems Biology, 2011, 7, 459.	3.2	145
18	High-resolution metabolic mapping of cell types in plant roots. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1232-41.	3.3	131

#	Article	IF	CITATIONS
19	Combining Expression and Comparative Evolutionary Analysis. The COBRA Gene Family. Plant Physiology, 2007, 143, 172-187.	2.3	125
20	BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 Interact and Regulate Secondary Cell Wall Formation via Repression of <i>REVOLUTA</i> Â Â. Plant Cell, 2015, 26, 4843-4861.	3.1	124
21	Protonophore―and pHâ€insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant Journal, 2008, 56, 948-962.	2.8	116
22	Enhanced Y1H assays for Arabidopsis. Nature Methods, 2011, 8, 1053-1055.	9.0	115
23	Lateral root emergence in <i>Arabidopsis</i> is dependent on transcription factor LBD29 regulating auxin influx carrier <i>LAX3</i> . Development (Cambridge), 2016, 143, 3340-9.	1.2	111
24	A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis. Plant Cell, 2020, 32, 319-335.	3.1	103
25	Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology. Plant Cell, 2009, 21, 1034-1051.	3.1	101
26	Evolutionary flexibility in flooding response circuitry in angiosperms. Science, 2019, 365, 1291-1295.	6.0	101
27	Systems Approaches to Identifying Gene Regulatory Networks in Plants. Annual Review of Cell and Developmental Biology, 2008, 24, 81-103.	4.0	96
28	Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks. Plant Cell, 2012, 24, 3859-3875.	3.1	96
29	Molecular control of crop shade avoidance. Current Opinion in Plant Biology, 2016, 30, 151-158.	3.5	96
30	Promoter-Based Integration in Plant Defense Regulation Â. Plant Physiology, 2014, 166, 1803-1820.	2.3	89
31	A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration. Plant and Cell Physiology, 2018, 59, 770-782.	1.5	81
32	Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation. Plant Cell, 2016, 28, 2616-2631.	3.1	78
33	A brief history of the TDIFâ€PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytologist, 2016, 209, 474-484.	3.5	77
34	Identification of Novel Loci Regulating Interspecific Variation in Root Morphology and Cellular Development in Tomato Â. Plant Physiology, 2013, 162, 755-768.	2.3	68
35	RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. Journal of Experimental Botany, 2016, 67, 4863-4875.	2.4	66
36	Complete substitution of a secondary cell wall with a primary cell wall in Arabidopsis. Nature Plants, 2018, 4, 777-783.	4.7	63

#	Article	IF	CITATIONS
37	Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation. Cell Reports, 2019, 28, 342-351.e4.	2.9	61
38	A network of transcriptional repressors modulates auxin responses. Nature, 2021, 589, 116-119.	13.7	56
39	Hormone Cross-Talk in Seed Dormancy. Journal of Plant Growth Regulation, 2003, 22, 25-31.	2.8	55
40	Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors. Developmental Cell, 2016, 39, 585-596.	3.1	54
41	A tomato phloemâ€mobile protein regulates the shootâ€toâ€root ratio by mediating the auxin response in distant organs. Plant Journal, 2015, 83, 853-863.	2.8	50
42	Reassess the <i>t</i> Test: Interact with All Your Data via ANOVA. Plant Cell, 2015, 27, 2088-2094.	3.1	48
43	Innovation, conservation, and repurposing of gene function in root cell type development. Cell, 2021, 184, 3333-3348.e19.	13.5	48
44	<scp>DNA</scp> methylation and gene expression regulation associated with vascularization in <i>Sorghum bicolor</i> . New Phytologist, 2017, 214, 1213-1229.	3.5	47
45	SUPPRESSOR OF GAMMA RESPONSE1 Links DNA Damage Response to Organ Regeneration. Plant Physiology, 2018, 176, 1665-1675.	2.3	47
46	Reconstructing spatiotemporal gene expression data from partial observations. Bioinformatics, 2009, 25, 2581-2587.	1.8	45
47	Mapping Transcriptional Networks in Plants: Data-Driven Discovery of Novel Biological Mechanisms. Annual Review of Plant Biology, 2016, 67, 575-594.	8.6	45
48	Manipulating Large-Scale Arabidopsis Microarray Expression Data: Identifying Dominant Expression Patterns and Biological Process Enrichment. Methods in Molecular Biology, 2009, 553, 57-77.	0.4	42
49	Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis. Plant Cell, 2018, 30, 178-195.	3.1	40
50	Omics and modelling approaches for understanding regulation of asymmetric cell divisions in arabidopsis and other angiosperm plants. Annals of Botany, 2014, 113, 1083-1105.	1.4	38
51	Nuclear Transcriptomes at High Resolution Using Retooled INTACT. Plant Physiology, 2018, 176, 270-281.	2.3	37
52	Unraveling the Dynamic Transcriptome. Plant Cell, 2006, 18, 2101-2111.	3.1	35
53	Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. Plant Physiology, 2019, 179, 1893-1907.	2.3	34
54	The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses. Plant Journal, 2019, 99, 1203-1219.	2.8	31

#	Article	IF	CITATIONS
55	Systems Biology Update: Cell Type-Specific Transcriptional Regulatory Networks. Plant Physiology, 2010, 152, 411-419.	2.3	30
56	Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Developmental Cell, 2022, 57, 1177-1192.e6.	3.1	27
57	Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Scientific Reports, 2018, 8, 7919.	1.6	25
58	Root cell types as an interface for biotic interactions. Trends in Plant Science, 2022, 27, 1173-1186.	4.3	25
59	Regulation of Root Angle and Gravitropism. G3: Genes, Genomes, Genetics, 2018, 8, 3841-3855.	0.8	24
60	Specification and regulation of vascular tissue identity in the <i>Arabidopsis</i> embryo. Development (Cambridge), 2020, 147, .	1.2	24
61	Plant single-cell solutions for energy and the environment. Communications Biology, 2021, 4, 962.	2.0	23
62	Translational regulation contributes to the elevated CO 2 response in two Solanum species. Plant Journal, 2020, 102, 383-397.	2.8	22
63	Single cell RNA sequencing and its promise in reconstructing plant vascular cell lineages. Current Opinion in Plant Biology, 2019, 48, 47-56.	3.5	20
64	A bipartite transcription factor module controlling expression in the bundle sheath of Arabidopsis thaliana. Nature Plants, 2020, 6, 1468-1479.	4.7	20
65	Novel biological insights revealed from cell type-specific expression profiling. Current Opinion in Plant Biology, 2011, 14, 601-607.	3.5	19
66	Gene regulatory networks in the Arabidopsis root. Current Opinion in Plant Biology, 2013, 16, 50-55.	3.5	17
67	FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. New Phytologist, 2020, 227, 1124-1137.	3.5	17
68	Identification of Protein–DNA Interactions Using Enhanced Yeast One-Hybrid Assays and a Semiautomated Approach. Methods in Molecular Biology, 2017, 1610, 187-215.	0.4	15
69	A Standardized Synthetic <i>Eucalyptus</i> Transcription Factor and Promoter Panel for Re-engineering Secondary Cell Wall Regulation in Biomass and Bioenergy Crops. ACS Synthetic Biology, 2019, 8, 463-465.	1.9	15
70	A genomeâ€scale TF–DNA interaction network of transcriptional regulation of <i>Arabidopsis</i> primary and specialized metabolism. Molecular Systems Biology, 2021, 17, e10625.	3.2	15
71	Extreme breeding: Leveraging genomics for crop improvement. Journal of the Science of Food and Agriculture, 2007, 87, 925-929.	1.7	14
72	Broadening the impact of plant science through innovative, integrative, and inclusive outreach. Plant Direct, 2021, 5, e00316.	0.8	14

5

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Rhizobium rhizogenes Strain ATCC 15834. Genome Announcements, 2014, 2, .	0.8	13
74	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	0.8	13
75	Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response. PLoS ONE, 2015, 10, e0136591.	1.1	13
76	Quality control and evaluation of plant epigenomics data. Plant Cell, 2022, 34, 503-513.	3.1	13
77	Epistatic Transcription Factor Networks Differentially Modulate <i>Arabidopsis</i> Growth and Defense. Genetics, 2020, 214, 529-541.	1.2	12
78	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	2.3	11
79	Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell, 2021, 33, 832-845.	3.1	11
80	Realâ€ŧime wholeâ€plant dynamics of heavy metal transport in <i>Arabidopsis halleri</i> and <i>Arabidopsis thaliana</i> by gammaâ€ŧay imaging. Plant Direct, 2019, 3, e00131.	0.8	10
81	Arabidopsis bioinformatics: tools and strategies. Plant Journal, 2021, 108, 1585-1596.	2.8	9
82	Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. Plant Cell, 2019, 31, 1188-1189.	3.1	8
83	Toward Development of Fluorescence-Quenching-Based Biosensors for Drought Stress in Plants. Analytical Chemistry, 2019, 91, 15644-15651.	3.2	7
84	Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO). PLoS Computational Biology, 2021, 17, e1009463.	1.5	7
85	Bioinformatic Tools in Arabidopsis Research. Methods in Molecular Biology, 2014, 1062, 97-136.	0.4	6
86	Detecting separate time scales in genetic expression data. BMC Genomics, 2010, 11, 381.	1.2	5
87	Indel Group in Genomes (IGG) Molecular Genetic Markers. Plant Physiology, 2016, 172, 38-61.	2.3	5
88	iPlant Systems Biology (iPSB): An International Network Hub in the Plant Community. Molecular Plant, 2019, 12, 727-730.	3.9	5
89	A Ratiometric Dual Color Luciferase Reporter for Fast Characterization of Transcriptional Regulatory Elements in Plants. ACS Synthetic Biology, 2021, 10, 2763-2766.	1.9	5
90	Gene Regulatory Networks during Arabidopsis Root Vascular Development. International Journal of Plant Sciences, 2013, 174, 1090-1097.	0.6	4

#	Article	IF	CITATIONS
91	Characterization of growth and development of sorghum genotypes with differential susceptibility to <i>Striga hermonthica</i> . Journal of Experimental Botany, 2021, 72, 7970-7983.	2.4	4
92	Isolation of Nuclei in Tagged Cell Types (INTACT), RNA Extraction and Ribosomal RNA Degradation to Prepare Material for RNA-Seq. Bio-protocol, 2018, 8, e2458.	0.2	4
93	Bioinformatic Tools in Arabidopsis Research. Methods in Molecular Biology, 2021, 2200, 25-89.	0.4	4
94	A systems approach to understanding root development. Canadian Journal of Botany, 2006, 84, 695-701.	1.2	3
95	When the time is ripe. ELife, 2013, 2, e00958.	2.8	2
96	GLRs: Mediating a defense-regeneration tradeoff in plants. Developmental Cell, 2022, 57, 417-418.	3.1	2
97	Forming roots from shoot. Science, 2022, 375, 974-975.	6.0	2
98	Additions and corrections: A systems approach to understanding root development. Canadian Journal of Botany, 2006, 84, 1508.	1.2	0
99	Transcriptional networks: The next generation. Current Plant Biology, 2015, 3-4, 1-2.	2.3	0
100	Focus on the biology of plant genomes. Plant Cell, 2021, 33, 781-782.	3.1	0
101	Development and Systems Biology: Riding the Genomics Wave towards a Systems Understanding of Root Development. , 0, , 304-330.		Ο

7