Kamran Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2119256/publications.pdf

Version: 2024-02-01

933447 839539 23 345 10 18 citations h-index g-index papers 25 25 25 277 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nitrate Application Induces Adventitious Root Growth by Regulating Gene Expression Patterns in Apple Rootstocks. Journal of Plant Growth Regulation, 2022, 41, 3467-3478.	5.1	7
2	Selection and Validation of Reliable Reference Genes for Gene Expression Studies in Different Genotypes and TRV-Infected Fruits of Peach (Prunus persica L. Batsch) during Ripening. Genes, 2022, 13, 160.	2.4	11
3	PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. Frontiers in Plant Science, 2022, 13, 844055.	3.6	9
4	PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. Horticulturae, 2022, 8, 379.	2.8	3
5	Identification of MdMED family, key role of MdMED81, and salicylic acid at the right time of year triggers MdMED81 to induce flowering in Malus domestica. Scientia Horticulturae, 2022, 304, 111341.	3.6	3
6	Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Scientia Horticulturae, 2021, 275, 109642.	3.6	23
7	Regulation of Flowering Time by Improving Leaf Health Markers and Expansion by Salicylic Acid Treatment: A New Approach to Induce Flowering in Malus domestica. Frontiers in Plant Science, 2021, 12, 655974.	3.6	6
8	Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses. BMC Plant Biology, 2021, 21, 543.	3.6	8
9	Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants. Fruit Research, 2021, 1, 1-11.	2.0	10
10	Chronic cement dust load induce novel damages in foliage and buds of Malus domestica. Scientific Reports, 2020, 10, 12186.	3.3	29
11	Role of Species and Planting Configuration on Transpiration and Microclimate for Urban Trees. Forests, 2020, 11, 825.	2.1	23
12	Epigenomic Regulatory Mechanism in Vegetative Phase Transition of <i>Malus hupehensis</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 4812-4829.	5.2	10
13	Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. Frontiers in Plant Science, 2020, 11, 128.	3.6	24
14	Transcriptome Analysis Reveals New Insights into <i>MdBAK1</i> -Mediated Plant Growth in <i>Malus domestica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9757-9771.	5.2	9
15	Effects of Chronic Dust Load On Leaf Pigments of the Landscape Plant Murraya Paniculata. Gesunde Pflanzen, 2019, 71, 249-258.	3.0	10
16	Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (<i>Malus domestica</i> Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. Plant and Cell Physiology, 2019, 60, 1702-1721.	3.1	27
17	Cement dust induce stress and attenuates photosynthesis in Arachis hypogaea. Environmental Science and Pollution Research, 2019, 26, 19490-19501.	5.3	11
18	Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering â€~Qinguan' and weakly flowering â€~Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18, 370.	3.6	19

#	Article	IF	CITATION
19	Expression of genes in the potential regulatory pathways controlling alternate bearing in â€~Fuji' (Malus domestica Borkh.) apple trees during flower induction. Plant Physiology and Biochemistry, 2018, 132, 579-589.	5.8	15
20	Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust. Environmental Science and Pollution Research, 2018, 25, 23055-23073.	5.3	28
21	Mediation of Flower Induction by Gibberellin and its Inhibitor Paclobutrazol: mRNA and miRNA Integration Comprises Complex Regulatory Cross-Talk in Apple. Plant and Cell Physiology, 2018, 59, 2288-2307.	3.1	21
22	A mini review fermentation and preservation: role of Lactic Acid Bacteria. MOJ Food Processing & Technology, 2018, 6, 414-417.	0.9	38
23	A mini review fermentation and preservation: role of Lactic Acid Bacteria. MOJ Food Processing & Technology, 2018, 6, 414-417.	0.9	0