Katarzyna Otulak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2119043/publications.pdf Version: 2024-02-01

ΚΑΤΑΡΖΥΝΑ ΟΤΙΠΑΚ

#	Article	IF	CITATIONS
1	Plant Cell Wall Dynamics in Compatible and Incompatible Potato Response to Infection Caused by Potato Virus Y (PVYNTN). International Journal of Molecular Sciences, 2018, 19, 862.	4.1	55
2	The evidence of Tobacco rattle virus impact on host plant organelles ultrastructure. Micron, 2015, 70, 7-20.	2.2	32
3	Plant Cell Wall as a Key Player During Resistant and Susceptible Plant-Virus Interactions. Frontiers in Microbiology, 2021, 12, 656809.	3.5	30
4	The Respiratory Burst Oxidase Homolog D (RbohD) Cell and Tissue Distribution in Potato–Potato Virus Y (PVYNTN) Hypersensitive and Susceptible Reactions. International Journal of Molecular Sciences, 2019, 20, 2741.	4.1	23
5	The Expression of Potato Expansin A3 (StEXPA3) and Extensin4 (StEXT4) Genes with Distribution of StEXPAs and HRGPs-Extensin Changes as an Effect of Cell Wall Rebuilding in Two Types of PVYNTN–Solanum tuberosum Interactions. Viruses, 2020, 12, 66.	3.3	23
6	Cytopathological Potato virus Y structures during Solanaceous plants infection. Micron, 2012, 43, 839-850.	2.2	22
7	Respiratory Burst Oxidase Homologs RBOHD and RBOHF as Key Modulating Components of Response in Turnip Mosaic Virus—Arabidopsis thaliana (L.) Heyhn System. International Journal of Molecular Sciences, 2020, 21, 8510.	4.1	22
8	Ultrastructural events during hypersensitive response of potato cv. Rywal infected with necrotic strains of potato virus Y. Acta Physiologiae Plantarum, 2010, 32, 635-644.	2.1	20
9	Localisation of hydrogen peroxide accumulation during Solanum tuberosum cv. Rywal hypersensitive response to Potato virus Y. Micron, 2010, 41, 327-335.	2.2	20
10	Calcium―and pHâ€dependent localization of annexin A6 isoforms in Balb/3T3 fibroblasts reflecting their potential participation in vesicular transport. Journal of Cellular Biochemistry, 2008, 104, 418-434.	2.6	19
11	Spatiotemporal Changes in Xylan-1/Xyloglucan and Xyloglucan Xyloglucosyl Transferase (XTH-Xet5) as a Step-In of Ultrastructural Cell Wall Remodelling in Potato–Potato Virus Y (PVYNTN) Hypersensitive and Susceptible Reaction. International Journal of Molecular Sciences, 2018, 19, 2287.	4.1	19
12	The participation of plant cell organelles in compatible and incompatible potato virus Y-tobacco and -potato plant interaction. Acta Physiologiae Plantarum, 2014, 36, 85-99.	2.1	17
13	Cellular localisation of calcium ions during potato hypersensitive response to Potato virus Y. Micron, 2011, 42, 381-391.	2.2	15
14	Ultrastructural Analysis of Prune Dwarf Virus Intercellular Transport and Pathogenesis. International Journal of Molecular Sciences, 2018, 19, 2570.	4.1	12
15	Diversity of serotypes and new cps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus. Veterinary Microbiology, 2020, 240, 108534.	1.9	12
16	Molecular Biology of Prune Dwarf Virus—A Lesser Known Member of the Bromoviridae but a Vital Component in the Dynamic Virus–Host Cell Interaction Network. International Journal of Molecular Sciences, 2017, 18, 2733.	4.1	11
17	Serological, molecular and immunofluorescent evidence for interference competition between isolates of <i>Potato virus Y</i> . Plant Pathology, 2018, 67, 1997-2012.	2.4	11
18	Dormancy removal by cold stratification increases glutathione and S-nitrosoglutathione content in apple seeds. Plant Physiology and Biochemistry, 2019, 138, 112-120.	5.8	11

KATARZYNA OTULAK

#	Article	IF	CITATIONS
19	Ultrastructural Analysis of Cells From Bell Pepper (Capsicum annuum) Infected With Bell Pepper Endornavirus. Frontiers in Plant Science, 2020, 11, 491.	3.6	11
20	Modifications in Tissue and Cell Ultrastructure as Elements of Immunity-Like Reaction in Chenopodium quinoa against Prune Dwarf Virus (PDV). Cells, 2020, 9, 148.	4.1	10
21	Switch from heterotrophy to autotrophy of apple cotyledons depends on NO signal. Planta, 2015, 242, 1221-1236.	3.2	9
22	Ultrastructural Impact of Tobacco Rattle Virus on Tobacco andÂPepper Ovary and Anther Tissues. Journal of Phytopathology, 2016, 164, 226-241.	1.0	9
23	Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots. Frontiers in Plant Science, 2019, 10, 1077.	3.6	9
24	Subcelullar localization of proteins associated with Prune dwarf virus replication. European Journal of Plant Pathology, 2017, 149, 653-668.	1.7	8
25	Glutathione Modulation in PVYNTN Susceptible and Resistant Potato Plant Interactions. International Journal of Molecular Sciences, 2022, 23, 3797.	4.1	8
26	Cell-to-cell movement of three genera (+) ss RNA plant viruses. Acta Physiologiae Plantarum, 2011, 33, 249-260.	2.1	7
27	Ultrastructural studies of plasmodesmatal and vascular translocation of tobacco rattle virus (TRV) in tobacco and potato. Acta Physiologiae Plantarum, 2012, 34, 1229-1238.	2.1	6
28	Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins. Micron, 2015, 79, 84-92.	2.2	6
29	Modulation of Expression of PVYNTN RNA-Dependent RNA Polymerase (NIb) and Heat Shock Cognate Host Protein HSC70 in Susceptible and Hypersensitive Potato Cultivars. Vaccines, 2021, 9, 1254.	4.4	6
30	Ultrastructural effects of infection caused by <i>Tobacco rattle virus</i> transmitted by <i>Trichodorus primitivus</i> in potato and tobacco tissues. Canadian Journal of Plant Pathology, 2012, 34, 126-138.	1.4	5
31	Phylogenetic Analysis of PDV Movement Protein Compared to Bromoviridae Members as Justification of Possible Intercellular Movement. Acta Biologica Cracoviensia Series Botanica, 2015, 57, 106-114.	0.5	2
32	Necrosis in Solanum Tuberosum Stems Infected with Potato Virus Y by Grafting. Acta Biologica Cracoviensia Series Botanica, 2010, 52, .	0.5	0
33	Ion-Exchange Membrane Chromatography as an Alternative Method of Separation of Potato y Virus. Plant Breeding and Seed Science, 2015, 72, 55-67.	0.1	О