Jaakko A Puhakka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118807/publications.pdf

Version: 2024-02-01

225 papers 8,301 citations

41258 49 h-index 71532 76 g-index

228 all docs 228 docs citations

times ranked

228

7107 citing authors

#	Article	lF	CITATIONS
1	Low residual dissolved phosphate in spent medium bioleaching enables rapid and enhanced solubilization of rare earth elements from end-of-life NiMH batteries. Minerals Engineering, 2022, 176, 107361.	1.8	9
2	Effects of metal extraction liquors from electric vehicle battery materials production on iron and sulfur oxidation by heap bioleaching microorganisms. Minerals Engineering, 2022, 178, 107409.	1.8	5
3	High tolerance of chemolithoautotrophic sulphur oxidizing bacteria towards pulp and paper mill wastewaters and their organic constituents supporting sulphur recovery in alkaline conditions. Chemical Engineering Journal, 2022, 450, 137972.	6.6	4
4	Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products. Journal of Hazardous Materials, 2021, 414, 125564.	6. 5	18
5	Increase in sedimentary organic carbon with a change from hypoxic to oxic conditions. Marine Pollution Bulletin, 2021, 168, 112397.	2.3	2
6	Simulated acid mine drainage treatment in iron oxidizing ceramic membrane bioreactor with subsequent co-precipitation of iron and arsenic. Water Research, 2021, 201, 117297.	5.3	13
7	Elemental sulphur production from thiosulphate under haloalkaline conditions in a Thioalkalivibrio versutus amended fluidized bed bioreactor. Biochemical Engineering Journal, 2021, 172, 108062.	1.8	5
8	Potential of biological sulphur recovery from thiosulphate by haloalkaliphilic Thioalkalivibrio denitrificans. Environmental Technology (United Kingdom), 2021, , 1-13.	1.2	1
9	The effect of start-up on energy recovery and compositional changes in brewery wastewater in bioelectrochemical systems. Bioelectrochemistry, 2020, 132, 107402.	2.4	6
10	Kinetics and modelling of thiosulphate biotransformations by haloalkaliphilic Thioalkalivibrio versutus. Chemical Engineering Journal, 2020, 401, 126047.	6.6	8
11	Formation and use of biogenic jarosite carrier for high-rate iron oxidising biofilms. Research in Microbiology, 2020, 171, 243-251.	1.0	6
12	Effects of elevated pressures on the activity of acidophilic bioleaching microorganisms. Biochemical Engineering Journal, 2019, 150, 107286.	1.8	4
13	Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell. Chemical Engineering Journal, 2019, 372, 141-150.	6.6	33
14	Fluidized bed bioreactor for multiple environmental engineering solutions. Water Research, 2019, 150, 452-465.	5. 3	54
15	Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery. Environmental Technology (United Kingdom), 2019, 40, 1467-1475.	1.2	5
16	Simultaneous removal of tetrathionate and copper from simulated acidic mining water in bioelectrochemical and electrochemical systems. Hydrometallurgy, 2018, 176, 129-138.	1.8	10
17	Effect of hydraulic retention time on continuous electricity production from xylose in up-flow microbial fuel cell. International Journal of Hydrogen Energy, 2017, 42, 27494-27501.	3.8	23
18	Enhancing the activity of iron-oxidising bacteria: A case study with process liquors from heap bioleaching of a complex sulphide ore. Hydrometallurgy, 2017, 167, 163-172.	1.8	22

#	Article	IF	Citations
19	The effect of anode potential on bioelectrochemical and electrochemical tetrathionate degradation. Bioresource Technology, 2017, 226, 173-180.	4.8	13
20	High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor. Chemical Engineering Journal, 2017, 310, 282-291.	6.6	42
21	Solid phase changes in chemically and biologically leached copper smelter slag. Minerals Engineering, 2017, 106, 97-101.	1.8	21
22	Metal biorecovery in acid solutions from a copper smelter slag. Hydrometallurgy, 2017, 168, 135-140.	1.8	41
23	Long-term stability of bioelectricity generation coupled with tetrathionate disproportionation. Bioresource Technology, 2016, 216, 876-882.	4.8	21
24	Arsenic removal from acidic solutions with biogenic ferric precipitates. Journal of Hazardous Materials, 2016, 306, 124-132.	6.5	67
25	Chemical and bacterial leaching of metals from a smelter slag in acid solutions. Hydrometallurgy, 2016, 159, 46-53.	1.8	47
26	Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling. Renewable and Sustainable Energy Reviews, 2016, 53, 462-476.	8.2	180
27	High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal, 2016, 284, 1287-1294.	6.6	104
28	Acid Leaching of Cu and Zn from a Smelter Slag with a Bacterial Consortium. Advanced Materials Research, 2015, 1130, 660-663.	0.3	7
29	Anaerobes in Bioelectrochemical Systems. Advances in Biochemical Engineering/Biotechnology, 2015, 156, 263-292.	0.6	3
30	Fluidized-bed denitrification of mining water tolerates high nickel concentrations. Bioresource Technology, 2015, 179, 284-290.	4.8	40
31	Selecting an indigenous microalgal strain for lipid production in anaerobically treated piggery wastewater. Bioresource Technology, 2015, 191, 369-376.	4.8	41
32	Effects of anode potentials on bioelectrogenic conversion of xylose and microbial community compositions. Biochemical Engineering Journal, 2015, 101, 248-252.	1.8	10
33	Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater. Biochemical Engineering Journal, 2015, 103, 177-184.	1.8	32
34	Lipid production by eukaryotic microorganisms isolated from palm oil mill effluent. Biochemical Engineering Journal, 2015, 99, 48-54.	1.8	14
35	Column leaching of low-grade sulfide ore from Zijinshan copper mine. International Journal of Mineral Processing, 2015, 139, 11-16.	2.6	13
36	Power generation in fed-batch and continuous up-flow microbial fuel cell from synthetic wastewater. Energy, 2015, 91, 235-241.	4.5	54

#	Article	lF	CITATIONS
37	Electricity generation from tetrathionate in microbial fuel cells by acidophiles. Journal of Hazardous Materials, 2015, 284, 182-189.	6.5	62
38	Fluidized-bed denitrification for mine waters. Part II: effects of Ni and Co. Biodegradation, 2014, 25, 417-23.	1.5	30
39	Fluidized-bed denitrification for mine waters. Part I: low pH and temperature operation. Biodegradation, 2014, 25, 425-435.	1.5	43
40	Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22°C. International Journal of Mineral Processing, 2014, 132, 1-7.	2.6	21
41	Effect of arsenic on nitrification of simulated mining water. Bioresource Technology, 2014, 164, 149-154.	4.8	40
42	Dark fermentative hydrogen production from lignocellulosic hydrolyzates – A review. Biomass and Bioenergy, 2014, 67, 145-159.	2.9	124
43	Profiling of bacterial community in a full-scale aerobic composting plant. International Biodeterioration and Biodegradation, 2013, 77, 85-90.	1.9	72
44	Bioelectricity production on xylose with a compost enrichment culture. International Journal of Hydrogen Energy, 2013, 38, 15606-15612.	3.8	22
45	Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors. Hydrometallurgy, 2013, 138, 1-13.	1.8	54
46	Anaerobic conversion of microalgal biomass to sustainable energy carriers – A review. Bioresource Technology, 2013, 135, 222-231.	4.8	115
47	Lipid profile characterization of wastewaters from different origins. Water Science and Technology, 2013, 68, 2505-2514.	1.2	4
48	Eukaryotic and prokaryotic microbial communities during microalgal biomass production. Bioresource Technology, 2012, 124, 387-393.	4.8	41
49	Microbial community dynamics during a demonstration-scale bioheap leaching operation. Hydrometallurgy, 2012, 125-126, 34-41.	1.8	37
50	Comparison of mesophilic and thermophilic anaerobic hydrogen production by hot spring enrichment culture. International Journal of Hydrogen Energy, 2012, 37, 16453-16459.	3.8	14
51	Silage as source of bacteria and electrons for dark fermentative hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 15518-15524.	3.8	28
52	Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. International Journal of Hydrogen Energy, 2012, 37, 12234-12240.	3.8	43
53	Hydrogenic and methanogenic fermentation of birch and conifer pulps. Applied Energy, 2012, 100, 58-65.	5.1	36
54	Dark Fermentative Hydrogen Production from Neutralized Acid Hydrolysates of Conifer Pulp. Applied Biochemistry and Biotechnology, 2012, 168, 2160-2169.	1.4	18

#	Article	IF	Citations
55	Energy Demands of Nitrogen Supply in Mass Cultivation of Two Commercially Important Microalgal Species, Chlorella vulgaris and Dunaliella tertiolecta. Bioenergy Research, 2012, 5, 669-684.	2.2	39
56	Production of Electricity and Butanol from Microalgal Biomass in Microbial Fuel Cells. Bioenergy Research, 2012, 5, 481-491.	2.2	57
57	Growth of <i>Dunaliella tertiolecta</i> and associated bacteria in photobioreactors. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1357-1365.	1.4	19
58	Growth of <i>Chlorella vulgaris</i> and associated bacteria in photobioreactors. Microbial Biotechnology, 2012, 5, 69-78.	2.0	77
59	Growth of <i>Chlorella vulgaris</i> and associated bacteria in photobioreactors. Microbial Biotechnology, 2012, 5, 449-449.	2.0	2
60	Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology for Biofuels, 2011, 4, 34.	6.2	158
61	Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Minerals Engineering, 2011, 24, 1113-1121.	1.8	73
62	Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. International Journal of Hydrogen Energy, 2011, 36, 10701-10708.	3.8	76
63	Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresource Technology, 2011, 102, 4501-4506.	4.8	32
64	Biogenic hydrogen and methane production from reed canary grass. Biomass and Bioenergy, 2011, 35, 773-780.	2.9	45
65	Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: Effects of different heat treatments. International Journal of Hydrogen Energy, 2011, 36, 1482-1490.	3.8	34
66	Bioleaching of flotation by-products of talc production permits the separation of nickel and cobalt from iron and arsenic. Process Biochemistry, 2011, 46, 1589-1598.	1.8	13
67	The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H2-fed membrane bioreactor. Process Biochemistry, 2010, 45, 363-368.	1.8	12
68	Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits. Bioprocess and Biosystems Engineering, 2010, 33, 449-456.	1.7	8
69	Microbial community structure in anaerobic co-digestion of grass silage and cow manure in a laboratory continuously stirred tank reactor. Biodegradation, 2010, 21, 135-146.	1.5	41
70	Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy, 2010, 101, 7-14.	1.8	45
71	Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy, 2010, 103, 74-79.	1.8	114
72	Enhancement of anaerobic hydrogen production by iron and nickel. International Journal of Hydrogen Energy, 2010, 35, 8554-8560.	3.8	98

#	Article	IF	Citations
73	Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. International Journal of Hydrogen Energy, 2010, 35, 10954-10959.	3.8	49
74	Direction of glucose fermentation towards hydrogen or ethanol production through on-line pH control. International Journal of Hydrogen Energy, 2010, 35, 10245-10251.	3.8	50
75	Characterization of jarosites produced by chemical synthesis over a temperature gradient from 2 to 40°C. International Journal of Mineral Processing, 2010, 94, 121-128.	2.6	31
76	Biological hydrogen sulfide production in an ethanol–lactate fed fluidized-bed bioreactor. Bioresource Technology, 2010, 101, 276-284.	4.8	37
77	Mine wastewater treatment using Phalaris arundinacea plant material hydrolyzate as substrate for sulfate-reducing bioreactor. Bioresource Technology, 2010, 101, 3931-3939.	4.8	27
78	Biodegradation of Aqueous Organic Matter over Seasonal Changes: Bioreactor Experiments with Indigenous Lake Water Bacteria. Journal of Environmental Engineering, ASCE, 2010, 136, 607-615.	0.7	6
79	Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Water Research, 2010, 44, 4932-4939.	5.3	32
80	Biodegradation of Natural Organic Matter in Longâ€Term, Continuousâ€Flow Experiments Simulating Artificial Ground Water Recharge for Drinking Water Production. Journal of Environmental Quality, 2009, 38, 44-52.	1.0	12
81	Lowâ€temperature (9°C) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic <i>Desulfomicrobium</i> species. Biotechnology and Bioengineering, 2009, 104, 740-751.	1.7	27
82	Thermovorax subterraneus, gen. nov., sp. nov., a thermophilic hydrogen-producing bacterium isolated from geothermally active underground mine. Extremophiles, 2009, 13, 505-510.	0.9	16
83	Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia. Microbiology, 2009, 78, 483-491.	0.5	23
84	Impact of crop species on bacterial community structure during anaerobic co-digestion of crops and cow manure. Bioresource Technology, 2009, 100, 2311-2315.	4.8	36
85	Thermophilic biohydrogen production by an anaerobic heat treated-hot spring culture. Bioresource Technology, 2009, 100, 5790-5795.	4.8	55
86	Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions. Hydrometallurgy, 2009, 97, 137-145.	1.8	25
87	Heap bioleaching of a complex sulfide ore: Part II. Effect of temperature on base metal extraction and bacterial compositions. Hydrometallurgy, 2009, 98, 101-107.	1.8	46
88	Heap bioleaching of a complex sulfide ore. Hydrometallurgy, 2009, 98, 92-100.	1.8	94
89	Process for biological oxidation and control of dissolved iron in bioleach liquors. Process Biochemistry, 2009, 44, 1315-1322.	1.8	27
90	Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3. Research in Microbiology, 2009, 160, 767-774.	1.0	40

#	Article	IF	Citations
91	Extracellular enzyme activities and nutrient availability during artificial groundwater recharge. Water Research, 2009, 43, 405-416.	5.3	22
92	Biologically Fe2+ oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap bioleaching: an artificial neural network-based model. Bioprocess and Biosystems Engineering, 2008, 31, 111-117.	1.7	15
93	Clustering hybrid regression: a novel computational approach to study and model biohydrogen production through dark fermentation. Bioprocess and Biosystems Engineering, 2008, 31, 631-640.	1.7	3
94	Silicate mineral dissolution during heap bioleaching. Biotechnology and Bioengineering, 2008, 99, 811-820.	1.7	78
95	Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas. Biotechnology and Bioengineering, 2008, 101, 679-690.	1.7	79
96	Highâ€efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnology and Bioengineering, 2008, 101, 665-678.	1.7	60
97	Quantitative monitoring of a hydrogen-producing Clostridium butyricum strain from a continuous-flow, mixed culture bioreactor employing real-time PCR. International Journal of Hydrogen Energy, 2008, 33, 542-549.	3.8	31
98	Microbial Adaptation to Boreal Saturated Subsurface: Implications in Bioremediation of Polychlorophenols., 2008,, 409-427.		3
99	Biological Iron Oxidation and Sulfate Reduction in the Treatment of Acid Mine Drainage at Low Temperatures. , 2008, , 429-454.		11
100	Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge. Water Research, 2008, 42, 4525-4537.	5.3	17
101	Bioprospecting Thermophilic Microorganisms from Icelandic Hot Springs for Hydrogen and Ethanol Production. Energy & Samp; Fuels, 2008, 22, 134-140.	2.5	55
102	Application of the Clustering Hybrid Regression Approach to Model Xylose-Based Fermentative Hydrogen Production. Energy & Energy	2.5	1
103	Treatment of saline, acidic, metal-contaminated groundwater from the Western Australian Wheatbelt. Water Science and Technology, 2008, 58, 2353-2364.	1.2	2
104	Desulfotomaculum alcoholivorax sp. nov., a moderately thermophilic, spore-forming, sulfate-reducer isolated from a fluidized-bed reactor treating acidic metal- and sulfate-containing wastewater. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 833-838.	0.8	24
105	Efficient automated method for image-based classification of microbial cells. , 2008, , .		7
106	Precipitation of Cu-Sulfides by Copper-Tolerant <i>Desulfovibrio</i> Isolates. Geomicrobiology Journal, 2008, 25, 219-227.	1.0	26
107	Exploring the Interrelationship Between Bioreactor Stability and Carbon Balance. , 2007, , .		0
108	Temperature Effects on the Iron Oxidation Kinetics of a <i>Leptospirillum ferriphilum</i> Dominated Culture at pH Below One. Advanced Materials Research, 2007, 20-21, 465-468.	0.3	5

#	Article	IF	Citations
109	Hydrolysed Cellulose Material as Sulfate Reduction Electron Donor to Treat Metal- and Sulfate Containing Waste Water. Advanced Materials Research, 2007, 20-21, 326-326.	0.3	1
110	High-Rate Fluidized-Bed Ferric Sulfate Generation for Hydrometallurgical Applications. Advanced Materials Research, 2007, 20-21, 54-57.	0.3	1
111	Microbial Community of the Talvivaara Demonstration-Scale Bioheap. Advanced Materials Research, 2007, 20-21, 579-579.	0.3	3
112	Iron Oxidation and Bioleaching Potential at Low Temperatures. Advanced Materials Research, 2007, 20-21, 578-578.	0.3	0
113	Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming sulfate-reducer isolated from a sulfidogenic fluidized-bed reactor. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1089-1094.	0.8	51
114	Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 98-102.	0.8	29
115	Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65â C temperatures is limited by acetate oxidation. Water Research, 2007, 41, 2706-2714.	5.3	36
116	Natural organic matter (NOM) removal and structural changes in the bacterial community during artificial groundwater recharge with humic lake water. Water Research, 2007, 41, 2715-2725.	5.3	42
117	High-rate sulphidogenic fluidised-bed treatment of metal-containing wastewater at high temperature. Water Science and Technology, 2007, 55, 269-275.	1.2	2
118	Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures. Biotechnology and Bioengineering, 2007, 96, 1064-1072.	1.7	37
119	Neural network prediction of thermophilic ($65\hat{A}^{\circ}C$) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater. Biotechnology and Bioengineering, 2007, 97, 780-787.	1.7	17
120	The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidised-bed bioreactor. Biotechnology and Bioengineering, 2007, 97, 742-758.	1.7	115
121	Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnology and Bioengineering, 2007, 97, 1205-1215.	1.7	43
122	Kinetics of iron oxidation byLeptospirillum ferriphilum dominated culture at pH below one. Biotechnology and Bioengineering, 2007, 97, 1121-1127.	1.7	27
123	Iron oxidation and precipitation in a simulated heap leaching solution in a Leptospirillum ferriphilum dominated biofilm reactor. Hydrometallurgy, 2007, 88, 67-74.	1.8	34
124	Effect of fluidized-bed carrier material on biological ferric sulphate generation. Minerals Engineering, 2007, 20, 782-792.	1.8	12
125	Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals. Engineering in Life Sciences, 2007, 7, 541-564.	2.0	292
126	Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Biodegradation, 2007, 18, 769-782.	1.5	30

#	Article	IF	Citations
127	Heap Leaching of Black Schist., 2007, , 139-151.		16
128	Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 2006, 97, 529-534.	4.8	41
129	Chalcopyrite concentrate leaching with biologically produced ferric sulphate. Bioresource Technology, 2006, 97, 1727-1734.	4.8	47
130	The performance, kinetics and microbiology of sulfidogenic fluidized-bed treatment of acidic metaland sulfate-containing wastewater. Hydrometallurgy, 2006, 83, 204-213.	1.8	67
131	Field-Scale Assessment of Phytotreatment of Soil Contaminated with Weathered Hydrocarbons and Heavy Metals (9 pp). Journal of Soils and Sediments, 2006, 6, 128-136.	1.5	55
132	Effect of Modified Fenton's Reaction on Microbial Activity and Removal of PAHs in Creosote Oil Contaminated Soil. Biodegradation, 2006, 17, 29-39.	1.5	45
133	Characterization of a thermophilic sulfur oxidizing enrichment culture dominated by a Sulfolobus sp. obtained from an underground hot spring for use in extreme bioleaching conditions. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 984-994.	1.4	14
134	Bioleaching of acid-consuming low-grade nickel ore with elemental sulfur addition and subsequent acid generation. Journal of Chemical Technology and Biotechnology, 2006, 81, 34-40.	1.6	21
135	Treatment of PAH-contaminated soil by combination of Fenton's reaction and biodegradation. Journal of Chemical Technology and Biotechnology, 2006, 81, 598-607.	1.6	36
136	Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2603-2608.	0.8	54
137	Novel Thermophilic Sulfate-Reducing Bacteria from a Geothermally Active Underground Mine in Japan. Applied and Environmental Microbiology, 2006, 72, 3759-3762.	1.4	39
138	Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 2005, 39, 859-863.	0.8	230
139	High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm. Process Biochemistry, 2005, 40, 3536-3541.	1.8	41
140	Metabolic responses of microbiota to diesel fuel addition in vegetated soil. Biodegradation, 2005, 16, 91-101.	1.5	21
141	Sulfate Reduction Potential in Sediments in the Norilsk Mining Area, Northern Siberia. Geomicrobiology Journal, 2005, 22, 11-25.	1.0	38
142	Characterization and microbial utilization of dissolved organic carbon in groundwater contaminated with chlorophenols. Chemosphere, 2005, 59, 983-996.	4.2	13
143	EFFECT OF TANK DESIGN AND TWO-PHASED FILTRATION ON CLEANLINESS LEVEL OF WATER HYDRAULIC SYSTEM. Proceedings of the JFPS International Symposium on Fluid Power, 2005, 2005, 479-484.	0.1	0
144	Chlorinated Organic Contaminants from Mechanical Wood Processing and Their Bioremediation. , 2004, , 421-442.		1

#	Article	IF	Citations
145	Microbial growth control in water hydraulic systems by conventional filtration. Filtration and Separation, 2004, 41, 41-47.	0.2	3
146	Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 409-414.	1.4	14
147	Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiology Ecology, 2004, 47, 279-289.	1.3	117
148	High-rate ferric sulfate generation by aLeptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor. Biotechnology and Bioengineering, 2004, 85, 697-705.	1.7	68
149	High-rate ferric sulfate generation by aLeptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor. Biotechnology and Bioengineering, 2004, 85, 683-694.	1.7	71
150	Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnology and Bioengineering, 2004, 86, 332-343.	1.7	150
151	Chloride-promoted leaching of chalcopyrite concentrate by biologically-produced ferric sulfate. Journal of Chemical Technology and Biotechnology, 2004, 79, 830-834.	1.6	29
152	Culturable Diversity and Community Fatty Acid Profiling of Sulfate-Reducing Fluidized-Bed Reactors Treating Acidic, Metal-Containing Wastewater. Geomicrobiology Journal, 2004, 21, 469-480.	1.0	46
153	Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Research, 2004, 38, 645-654.	5.3	80
154	Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation, 2003, 14, 207-217.	1.5	108
155	The role of sulphidogenesis in anaerobic treatment phase of tannery wastewater treatment in advanced integrated wastewater pond system. Biodegradation, 2003, 14, 219-227.	1.5	8
156	Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs). Biodegradation, 2003, 14, 249-263.	1.5	25
157	The isolation and use of iron-oxidizing, moderately thermophilic acidophiles from the Collie coal mine for the generation of ferric iron leaching solution. Applied Microbiology and Biotechnology, 2003, 60, 748-753.	1.7	24
158	Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Research, 2003, 37, 255-266.	5.3	198
159	Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater. Water Research, 2003, 37, 1378-1384.	5.3	15
160	Photodegradation Products of Polycyclic Aromatic Hydrocarbons in Water and Their Amenability to Biodegradation. Polycyclic Aromatic Compounds, 2003, 23, 401-416.	1.4	13
161	Isolation and Characterization of Novosphingobium sp. Strain MT1, a Dominant Polychlorophenol-Degrading Strain in a Groundwater Bioremediation System. Applied and Environmental Microbiology, 2002, 68, 173-180.	1.4	145
162	Effects of fluid-flow velocity and water quality on planktonic and sessile microbial growth in water hydraulic system. Water Research, 2002, 36, 3812-3820.	5.3	33

#	Article	IF	Citations
163	Moderately thermophilic iron oxidising bacteria isolated from a pyritic coal deposit showing spontaneous combustion. Minerals Engineering, 2002, 15, 815-822.	1.8	29
164	Potential of microbial growth control in water hydraulic systems by UV-irradiation and filtration. Journal of Chemical Technology and Biotechnology, 2002, 77, 903-909.	1.6	3
165	Effects of high and fluctuating pressure on microbial abundance and activity in a water hydraulic system. Applied Microbiology and Biotechnology, 2002, 58, 669-674.	1.7	4
166	Occurrence of bacteria in industrial fluid power systems. Clean Technologies and Environmental Policy, 2002, 4, 26-31.	2.1	6
167	Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresource Technology, 2002, 84, 221-228.	4.8	134
168	Psychrotolerant and microaerophilic bacteria in boreal groundwater. FEMS Microbiology Ecology, 2002, 41, 9-16.	1.3	16
169	Psychrotolerant and microaerophilic bacteria in boreal groundwater. FEMS Microbiology Ecology, 2002, 41, 9-16.	1.3	11
170	The oxidation, fate and effects of iron during on-site bioremediation of groundwater contaminated by a mixture of polychlorophenols. Biodegradation, 2002, 13, 317-328.	1.5	4
171	EFFECTS OF MICROBIAL GROWTH AND PARTICLES ON FILTRATION IN WATER HYDRAULIC SYSTEM. Proceedings of the JFPS International Symposium on Fluid Power, 2002, 2002, 173-176.	0.1	3
172	Production and Characterization of the Recombinant Sphingomonas chlorophenolica Pentachlorophenol 4-Monooxygenase. Biochemical and Biophysical Research Communications, 2001, 289, 161-166.	1.0	15
173	In situ polychlorophenol bioremediation potential of the indigenous bacterial community of boreal groundwater. Water Research, 2001, 35, 2496-2504.	5.3	49
174	Temperature- and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria. Archives of Microbiology, 2001, 177, 41-46.	1.0	24
175	Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation, 2001, 12, 291-301.	1.5	55
176	Biodegradation of Photoirradiated Polycyclic Aromatic Hydrocarbon Constituents of Creosote Oil. Environmental Technology (United Kingdom), 2000, 21, 901-907.	1.2	6
177	Photodegradation of Selected Aromatic Constituents of Creosote in Organic Solvents. Polycyclic Aromatic Compounds, 2000, 21, 297-309.	1.4	3
178	Characterization Studies of an Anaerobic, Pentachlorophenol-Dechlorinating Enrichment Culture. Bioremediation Journal, 2000, 4, 285-293.	1.0	5
179	On-site biological remediation of contaminated groundwater: a review. Environmental Pollution, 2000, 107, 187-197.	3.7	103
180	Microbial water quality and diversity in hydraulic systems using tap water as a pressure medium. Water Science and Technology, 2000, 41, 215-222.	1.2	4

#	Article	IF	CITATIONS
181	Anaerobic transformation of $1,1,1$ -trichloroethane by municipal digester sludge. Biodegradation, 1999, 10, 297-305.	1.5	13
182	Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Archives of Microbiology, 1999, 171, 189-197.	1.0	85
183	Effects of chemical spills on activated sludge treatment performance in pulp and paper mills. Water Science and Technology, 1999, 40, 319.	1.2	13
184	Effects of Electron Donors on Degradation of Pentachlorophenol in a Methanogenic Fluidized Bed Reactor. Environmental Technology (United Kingdom), 1999, 20, 909-920.	1.2	11
185	Sequential Anaerobic Dechlorination of Pentachlorophenol:Â Competitive Inhibition Effects and a Kinetic Model. Environmental Science & Echnology, 1999, 33, 1604-1611.	4.6	25
186	Simulation of in situ subsurface biodegradation of polychlorophenols in air-lift percolators. Applied Microbiology and Biotechnology, 1998, 49, 663-668.	1.7	16
187	EFFECTS OF TEMPERATURE ON CHLOROPHENOL BIODEGRADATION KINETICS IN FLUIDIZED-BED REACTORS WITH DIFFERENT BIOMASS CARRIERS. Water Research, 1998, 32, 81-90.	5.3	43
188	Enrichment and operation strategies for polychlorophenol degrading microbial cultures in an aerobic fluidized-bed reactor. Water Environment Research, 1998, 70, 171-180.	1.3	11
189	Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environmental Science & Environmental Science	4.6	156
190	Resistance of EDTA and DTPA to aerobic biodegradation. Water Science and Technology, 1997, 35, 25.	1.2	40
191	Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Applied Microbiology and Biotechnology, 1997, 47, 675-682.	1.7	22
192	Nitrification, denitrification, and dechlorination in bleached kraft pulp mill wastewater. Applied Microbiology and Biotechnology, 1997, 47, 734-741.	1.7	6
193	Transformations of 1,1,2,2-Tetrachloroethane under Methanogenic Conditions. Environmental Science & En	4.6	73
194	Fluidized-bed enrichment of marine ammonia-to-nitrite oxidizers and their ability to degrade chloroaliphatics. International Biodeterioration and Biodegradation, 1996, 38, 9-18.	1.9	11
195	Biodegradation of PAH Mixtures by a Marine Sediment Enrichment. Polycyclic Aromatic Compounds, 1996, 11, 27-34.	1.4	5
196	Fluidized-bed biofilms for chlorophenol mineralization. Water Science and Technology, 1995, 31, 227.	1.2	16
197	Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor. Applied Microbiology and Biotechnology, 1995, 42, 951-957.	1.7	39
198	Fluidized-bed biofilms for chlorophenol mineralization. Water Science and Technology, 1995, 31, 227-235.	1.2	23

#	Article	IF	Citations
199	Bioremediation of chlorophenol contaminated ground water. Environmental Technology (United) Tj ETQq1 1 0.7	7843]4 rgB1	「/Overlock
200	Anaerobic treatment in pulp- and paper-mill waste management: A review. Bioresource Technology, 1994, 47, 1-18.	4.8	129
201	Effects of electron donors and inhibitors on reductive dechlorination of 2,4,6-trichlorophenol. Water Research, 1994, 28, 2101-2107.	5.3	60
202	Degradation of chlorinated phenols by a toluene enriched microbial culture. Water Research, 1994, 28, 1897-1906.	5.3	5
203	High-Rate Bioremediation of Chlorophenol-Contaminated Groundwater at Low Temperatures. Environmental Science & Environmental S	4.6	58
204	Reductive Dechlorination of Aroclor 1254 by Marine Sediment Cultures. Environmental Science & Emp; Technology, 1994, 28, 2286-2294.	4.6	52
205	Aerobic and Anaerobic Biotransformations and Treatment of Chlorinated Pulp Bleach Waste Constituents. Water Science and Technology, 1994, 29, 73-80.	1.2	11
206	Chlorophenol toxicity removal and monitoring in aerobic treatment: recovery from process upsets. Environmental Science & Envir	4.6	71
207	Dechlorination of 2,4,6-trichlorophenol by a nitrifying biofilm. Water Research, 1993, 27, 757-767.	5.3	22
208	Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents. Water Research, 1992, 26, 765-770.	5. 3	58
209	Chlorophenol Degradation under Oxic and Anoxic Conditions. Water Science and Technology, 1992, 25, 147-152.	1.2	37
210	Anaerobic treatment of kraft pulp-mill waste activated-sludge: Gas production and solids reduction. Bioresource Technology, 1992, 39, 61-68.	4.8	33
211	Anaerobic treatment of kraft pulp-mill waste activated-sludge: Sludge dewaterability and filtrate quality. Bioresource Technology, 1992, 39, 69-75.	4.8	10
212	Anaerobic Sludge Digestion in Industrial Wastewater Treatment. Water Science and Technology, 1991, 24, 61-68.	1.2	4
213	Effect of molybdate ions on methanation of simulated and natural waste-waters. Applied Microbiology and Biotechnology, 1990, 32, 494-498.	1.7	9
214	Immobilizedâ€Cell Degradation of Chlorophenols. Journal of Environmental Engineering, ASCE, 1990, 116, 683-697.	0.7	40
215	Carbon flow in acetotrophic enrichment cultures from pulp mill effluent treatment. Water Research, 1990, 24, 515-519.	5.3	13
216	Sulfur Reduction and Inhibition in Anaerobic Treatment of Simulated Pulp Mill Wastewater. Systematic and Applied Microbiology, 1989, 11, 202-206.	1.2	10

#	Article	IF	CITATIONS
217	Effect of organic compounds on the microbiological leaching of a complex sulphide ore material. MIRCEN Journal of Applied Microbiology and Biotechnology, 1987, 3, 429-436.	0.3	12
218	Microbiological solubilization of metals from complex sulfide ore material in aerated column reactors. Acta Biotechnologica, 1986, 6, 233-238.	1.0	9
219	Biological leaching of sulfide minerals with the use of shake flask, aerated column, air-lift reactor, and percolation techniques. Acta Biotechnologica, 1986, 6, 345-354.	1.0	12
220	Silver toxicity to ferrous iron and pyrite oxidation and its alleviation by yeast extract in cultures of Thiobacillus ferrooxidans. Biotechnology Letters, 1985, 7, 389-394.	1.1	18
221	Effects of Microbial Growth on Filtration in Water Hydraulic System. , 0, , .		2
222	Biological Solubilisation of Metals from Solid Waste Materials from Copper, Steel and Recycling Industries. Advanced Materials Research, 0, 71-73, 673-676.	0.3	0
223	Low Temperature Sulfate Reduction for AMD Treatment. Advanced Materials Research, 0, 71-73, 553-556.	0.3	O
224	Column Bioleaching of Low Grade Copper Sulfide Ore at Extreme Conditions for Most Mineral Processing Bacteria. Advanced Materials Research, 0, 825, 318-321.	0.3	4
225	Impact of Heavy Metals on Denitrification of Simulated Mining Wastewaters. Advanced Materials Research, 0, 825, 500-503.	0.3	16