Thomas Weimbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118759/publications.pdf

Version: 2024-02-01

63 4,749 30 60 papers citations h-index g-index

66 66 3940 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ketogenic dietary interventions in autosomal dominant polycystic kidney disease—a retrospective case series study: first insights into feasibility, safety and effects. CKJ: Clinical Kidney Journal, 2022, 15, 1079-1092.	1.4	23
2	Pharmacological Effects of Panduratin A on Renal Cyst Development in In Vitro and In Vivo Models of Polycystic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 4328.	1.8	2
3	Ren.Nu, a Dietary Program for Individuals with Autosomal-Dominant Polycystic Kidney Disease Implementing a Sustainable, Plant-Focused, Kidney-Safe, Ketogenic Approach with Avoidance of Renal Stressors. Kidney and Dialysis, 2022, 2, 183-203.	0.5	11
4	MO016: Feasibility and Effectiveness of Short-Term Ketogenic Interventions in Autosomal Dominant Polycystic Kidney Disease (ADPKD): Results from the Reset-Pkd Study. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	1
5	Establishing a Core Outcome Set for Autosomal Dominant Polycystic Kidney Disease: Report of the Standardized Outcomes in Nephrology–Polycystic Kidney Disease (SONG-PKD) Consensus Workshop. American Journal of Kidney Diseases, 2021, 77, 255-263.	2.1	21
6	The Habc domain of syntaxin 3 is a ubiquitin binding domain. Scientific Reports, 2020, 10, 21350.	1.6	3
7	The carboxyâ€ŧerminus of the human ARPKD protein fibrocystin can control STAT3 signalling by regulating SRCâ€activation. Journal of Cellular and Molecular Medicine, 2020, 24, 14633-14638.	1.6	10
8	STAT signaling in polycystic kidney disease. Cellular Signalling, 2020, 72, 109639.	1.7	17
9	Ketosis Ameliorates Renal Cyst Growth in Polycystic Kidney Disease. Cell Metabolism, 2019, 30, 1007-1023.e5.	7.2	137
10	Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. Journal of Clinical Investigation, 2019, 129, 4506-4522.	3.9	54
11	Soluble syntaxin 3 functions as a transcriptional regulator. Journal of Biological Chemistry, 2018, 293, 5478-5491.	1.6	14
12	Emerging targeted strategies for the treatment of autosomal dominant polycystic kidney disease. CKJ: Clinical Kidney Journal, 2018, 11, i27-i38.	1.4	28
13	Are Cyst-Associated Macrophages in Polycystic Kidney Disease the Equivalent to TAMs in Cancer?. Journal of the American Society of Nephrology: JASN, 2018, 29, 2447-2448.	3.0	7
14	Casein kinase $1\hat{l}\mu$ and $1\hat{l}\pm$ as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. American Journal of Physiology - Renal Physiology, 2018, 315, F57-F73.	1.3	4
15	Comparison of folate-conjugated rapamycin versus unconjugated rapamycin in an orthologous mouse model of polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F395-F405.	1.3	24
16	Identification of targets of IL-13 and STAT6 signaling in polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F86-F96.	1.3	15
17	Tracking Endocytosis and Intracellular Trafficking of Epitope-tagged Syntaxin 3 by Antibody Feeding in Live, Polarized MDCK Cells. Bio-protocol, 2018, 8, .	0.2	O
18	Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes. Molecular Biology of the Cell, 2017, 28, 2843-2853.	0.9	28

#	Article	IF	CITATIONS
19	Regulation of Polycystin-1 Function by Calmodulin Binding. PLoS ONE, 2016, 11, e0161525.	1.1	17
20	The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS ONE, 2016, 11, e0163671.	1.1	18
21	A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2016, 310, F726-F731.	1.3	79
22	Bicc1 Polymerization Regulates the Localization and Silencing of Bound mRNA. Molecular and Cellular Biology, 2015, 35, 3339-3353.	1.1	27
23	Exploitation of the Polymeric Immunoglobulin Receptor for Antibody Targeting to Renal Cyst Lumens in Polycystic Kidney Disease. Journal of Biological Chemistry, 2015, 290, 15679-15686.	1.6	17
24	The Cleaved Cytoplasmic Tail of Polycystin-1 Regulates Src-Dependent STAT3 Activation. Journal of the American Society of Nephrology: JASN, 2014, 25, 1737-1748.	3.0	61
25	STAT3 signaling in polycystic kidney disease. Drug Discovery Today Disease Mechanisms, 2013, 10, e113-e118.	0.8	26
26	Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. Jak-stat, 2013, 2, e23650.	2.2	50
27	Folate-Conjugated Rapamycin Slows Progression of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2012, 23, 1674-1681.	3.0	89
28	Rapamycinâ€mediated suppression of renal cyst expansion in del34 <i>Pkd1^{â²' â²'}</i> mutant mouse embryos: An investigation of the feasibility of renal cyst prevention in the foetus. Nephrology, 2012, 17, 739-747.	0.7	12
29	Signal transducer and activator of transcription-6 (STAT6) inhibition suppresses renal cyst growth in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18067-18072.	3.3	70
30	Third-Hit Signaling in Renal Cyst Formation. Journal of the American Society of Nephrology: JASN, 2011, 22, 793-795.	3.0	42
31	Polycystin-1 regulates STAT activity by a dual mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7985-7990.	3.3	125
32	Basolateral Sorting of Syntaxin 4 Is Dependent on Its N-terminal Domain and the AP1B Clathrin Adaptor, and Required for the Epithelial Cell Polarity. PLoS ONE, 2011, 6, e21181.	1.1	29
33	Rapamycin Ameliorates PKD Resulting from Conditional Inactivation of Pkd1. Journal of the American Society of Nephrology: JASN, 2010, 21, 489-497.	3.0	226
34	Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1312-1329.	2.2	85
35	Syntaxin specificity of aquaporins in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2009, 297, F292-F300.	1.3	20
36	Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. American Journal of Physiology - Renal Physiology, 2007, 293, F1423-F1432.	1.3	100

3

#	Article	IF	Citations
37	Bacteriaâ€generated PtdIns(3) <i>P</i> Recruits VAMP8 to Facilitate Phagocytosis. Traffic, 2007, 8, 1365-1374.	1.3	48
38	Apical targeting of syntaxin 3 is essential for epithelial cell polarity. Journal of Cell Biology, 2006, 173, 937-948.	2.3	82
39	The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5466-5471.	3.3	715
40	Polycystin-1, STAT6, and P100 Function in a Pathway that Transduces Ciliary Mechanosensation and Is Activated in Polycystic Kidney Disease. Developmental Cell, 2006, 10, 57-69.	3.1	325
41	A dual tyrosine-leucine motif mediates myelin protein PO targeting in MDCK cells. Glia, 2006, 54, 135-145.	2.5	7
42	Regulation of mTOR by Polycystin-1: is Polycystic Kidney Disease a Case of Futile Repair?. Cell Cycle, 2006, 5, 2425-2429.	1.3	52
43	Syntaxins 3 and 4 Are Concentrated in Separate Clusters on the Plasma Membrane before the Establishment of Cell Polarity. Molecular Biology of the Cell, 2006, 17, 977-989.	0.9	72
44	Differing effects of microtubule depolymerizing and stabilizing chemotherapeutic agents on t-SNARE–mediated apical targeting of prostate-specific membrane antigen. Molecular Cancer Therapeutics, 2006, 5, 2468-2473.	1.9	5
45	Image Segmentation, Registration and Visualization of Serial MR Images for Therapeutic Assessment of Polycystic Kidney Disease in Transgenic Mice., 2005, 2006, 467-9.		7
46	Regulation of nuclear functions – nucleocytoplasmic transport in context. European Journal of Cell Biology, 2004, 83, 185-192.	1.6	2
47	Polarity Proteins Control Ciliogenesis via Kinesin Motor Interactions. Current Biology, 2004, 14, 1451-1461.	1.8	192
48	Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biology, 2003, 5, 126-136.	4.6	215
49	Matrix Metalloproteinase Activity in Urine of Patients with Renal Cell Carcinoma Leads to Degradation of Extracellular Matrix proteins: possible use as a Screening Assay. Journal of Urology, 2003, 169, 1530-1534.	0.2	28
50	SNAREs and epithelial cells. Methods, 2003, 30, 191-197.	1.9	17
51	Syntaxin 2 and Endobrevin Are Required for the Terminal Step of Cytokinesis in Mammalian Cells. Developmental Cell, 2003, 4, 753-759.	3.1	175
52	Retinal pigment epithelial cells exhibit unique expression and localization of plasma membrane syntaxins which may contribute to their trafficking phenotype. Journal of Cell Science, 2002, 115, 4545-4553.	1.2	30
53	Direct Interaction between Rab3b and the Polymeric Immunoglobulin Receptor Controls Ligand-Stimulated Transcytosis in Epithelial Cells. Developmental Cell, 2002, 2, 219-228.	3.1	82
54	SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. American Journal of Physiology - Renal Physiology, 2002, 283, F1111-F1122.	1.3	72

#	Article	IF	CITATIONS
55	Intracellular Redirection of Plasma Membrane Trafficking after Loss of Epithelial Cell Polarity. Molecular Biology of the Cell, 2000, 11, 3045-3060.	0.9	55
56	A model for structural similarity between different SNARE complexes based on sequence relationships. Trends in Cell Biology, 1998, 8, 260-262.	3.6	142
57	The SNARE Machinery Is Involved in Apical Plasma Membrane Trafficking in MDCK Cells. Journal of Cell Biology, 1998, 141, 1503-1513.	2.3	169
58	Targeting of SNAP-23 and SNAP-25 in Polarized Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 3422-3430.	1.6	98
59	A conserved domain is present in different families of vesicular fusion proteins: A new superfamily. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3046-3051.	3.3	266
60	Apical targeting in polarized epithelial cells: There's more afloat than rafts. Trends in Cell Biology, 1997, 7, 393-399.	3.6	117
61	Topology of CNS Myelin Proteolipid Protein: Evidence for the Nonenzymic Glycosylation of Extracytoplasmic Domains in Normal and Diabetic Animals. Biochemistry, 1994, 33, 10408-10415.	1.2	29
62	Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry, 1992, 31, 12289-12296.	1.2	231
63	A Point Mutation at the X-Chromosomal Proteolipid Protein Locus in Pelizaeus-Merzbacher Disease Leads to Disruption of Myelinogenesis. Biological Chemistry Hoppe-Seyler, 1990, 371, 1175-1184.	1.4	23