
Salvador Cotillas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118746/publications.pdf Version: 2024-02-01

SALVADOR COTILLAS

#	Article	IF	CITATIONS
1	Disinfection of polymicrobial urines by electrochemical oxidation: Removal of antibiotic-resistant bacteria and genes. Journal of Hazardous Materials, 2022, 426, 128028.	12.4	20
2	The integration of ZVI-dehalogenation and electrochemical oxidation for the treatment of complex effluents polluted with iodinated compounds. Journal of Environmental Chemical Engineering, 2022, 10, 107587.	6.7	4
3	Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. Journal of Hazardous Materials, 2021, 410, 124548.	12.4	23
4	A tube-in-tube membrane microreactor for tertiary treatment of urban wastewaters by photo-Fenton at neutral pH: A proof of concept. Chemosphere, 2021, 263, 128049.	8.2	17
5	The role of chloramines on the electrodisinfection of Klebsiella pneumoniae in hospital urines. Chemical Engineering Journal, 2021, 409, 128253.	12.7	23
6	Disinfection of urines using an electro-ozonizer. Electrochimica Acta, 2021, 382, 138343.	5.2	12
7	Are we correctly targeting the research on disinfection of antibiotic-resistant bacteria (ARB)?. Journal of Cleaner Production, 2021, 320, 128865.	9.3	11
8	A review on disinfection technologies for controlling the antibiotic resistance spread. Science of the Total Environment, 2021, 797, 149150.	8.0	37
9	Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules, 2021, 26, 6813.	3.8	13
10	Scaling-up an integrated electrodisinfection-electrocoagulation process for wastewater reclamation. Chemical Engineering Journal, 2020, 380, 122415.	12.7	39
11	Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Separation and Purification Technology, 2020, 230, 115876.	7.9	13
12	Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Separation and Purification Technology, 2020, 237, 116345.	7.9	46
13	Removal of antibiotic resistant bacteria by electrolysis with diamond anodes: A pretreatment or a tertiary treatment?. Journal of Water Process Engineering, 2020, 38, 101557.	5.6	18
14	Single and combined electrochemical oxidation driven processes for the treatment of slaughterhouse wastewater. Journal of Cleaner Production, 2020, 270, 121858.	9.3	27
15	Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Science of the Total Environment, 2020, 725, 138430.	8.0	46
16	Environmental applications of electrochemical technology. What is needed to enable full-scale applications?. Current Opinion in Electrochemistry, 2019, 16, 149-156.	4.8	87
17	Can the substrate of the diamond anodes influence on the performance of the electrosynthesis of oxidants?. Journal of Electroanalytical Chemistry, 2019, 850, 113416.	3.8	19
18	Scaling up Photoelectrocatalytic Reactors: A TiO2 Nanotube-Coated Disc Compound Reactor Effectively Degrades Acetaminophen. Water (Switzerland), 2019, 11, 2522.	2.7	19

SALVADOR COTILLAS

#	Article	IF	CITATIONS
19	The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. ChemElectroChem, 2019, 6, 1376-1384.	3.4	31
20	Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation. Journal of Hazardous Materials, 2019, 372, 77-84.	12.4	16
21	Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes. Chemosphere, 2018, 199, 445-452.	8.2	45
22	Disinfection of urine by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2018, 229, 63-70.	20.2	48
23	Electrolysis with diamond anodes: Eventually, there are refractory species!. Chemosphere, 2018, 195, 771-776.	8.2	18
24	Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 2018, 263, 1-7.	5.2	124
25	Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Water Research, 2018, 128, 383-392.	11.3	61
26	Influence of the supporting electrolyte on the removal of ionic liquids by electrolysis with diamond anodes. Catalysis Today, 2018, 313, 203-210.	4.4	17
27	Removal of pharmaceuticals from the urine of polymedicated patients: A first approach. Chemical Engineering Journal, 2018, 331, 606-614.	12.7	36
28	Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. Separation and Purification Technology, 2018, 194, 19-25.	7.9	22
29	Treatment of Soil-Washing Effluents Polluted with Herbicide Oxyfluorfen by Combined Biosorption–Electrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 1903-1910.	3.7	22
30	Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes. Applied Catalysis B: Environmental, 2017, 213, 190-197.	20.2	35
31	Is it really important the addition of salts for the electrolysis of soil washing effluents?. Electrochimica Acta, 2017, 246, 372-379.	5.2	40
32	Removal of sulfate from mining waters by electrocoagulation. Separation and Purification Technology, 2017, 182, 87-93.	7.9	73
33	Electrocoagulation as a key technique in the integrated urban water cycle – A case study in the centre of Spain. Urban Water Journal, 2017, 14, 650-654.	2.1	10
34	Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes. Chemosphere, 2016, 163, 562-568.	8.2	42
35	Use of DiaCell modules for the electro-disinfection of secondary-treated wastewater with diamond anodes. Chemical Engineering Journal, 2016, 306, 433-440.	12.7	40
36	Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environmental Science and Pollution Research, 2016, 23, 19713-19722.	5.3	19

SALVADOR COTILLAS

#	Article	IF	CITATIONS
37	Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate. Separation and Purification Technology, 2016, 167, 127-135.	7.9	42
38	Removal of algae from biological cultures: a challenge for electrocoagulation?. Journal of Chemical Technology and Biotechnology, 2016, 91, 82-87.	3.2	15
39	Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2016, 188, 305-312.	20.2	82
40	Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. Journal of Hazardous Materials, 2016, 319, 93-101.	12.4	91
41	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. Journal of Electroanalytical Chemistry, 2015, 757, 144-149.	3.8	26
42	Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. Journal of Applied Electrochemistry, 2015, 45, 799-808.	2.9	48
43	Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation. Ultrasonics Sonochemistry, 2015, 22, 493-498.	8.2	27
44	Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Applied Catalysis B: Environmental, 2015, 162, 252-259.	20.2	79
45	Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. Water Research, 2014, 53, 329-338.	11.3	64
46	Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater. Electrochimica Acta, 2014, 140, 396-403.	5.2	34
47	Novel electrodialysis–electrochlorination integrated process for the reclamation of treated wastewaters. Separation and Purification Technology, 2014, 132, 362-369.	7.9	29
48	Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Research, 2013, 47, 1741-1750.	11.3	88
49	Electrochemical Synthesis of Peroxyacetic Acid Using Conductive Diamond Electrodes. Industrial & Engineering Chemistry Research, 2011, 50, 10889-10893.	3.7	21
50	Improvements in the Electrochemical Production of Ferrates with Conductive Diamond Anodes Using Goethite as Raw Material and Ultrasound. Industrial & Engineering Chemistry Research, 2011, 50, 7073-7076.	3.7	22