Tae Il Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced electrical hysteresis of organic thin-film transistors based on small molecule semiconductor through an insulating polymer binder. Korean Journal of Chemical Engineering, 2022, 39, 499-503.	1.2	1
2	Antioxidant Triggered Metallic 1T' Phase Transformations of Chemically Exfoliated Tungsten Disulfide (WS ₂) Nanosheets. Small, 2022, 18, e2107557.	5.2	3
3	Two-dimensional self-assembled network structure of Co3O4 quantum-dot-decorated ZnO nanobeads for ppb-level acetone sensors. Materials Letters, 2022, 314, 131826.	1.3	6
4	Highly sensitive breath sensor based on sonochemically synthesized cobalt-doped zinc oxide spherical beads. Ultrasonics Sonochemistry, 2022, 84, 105956.	3.8	4
5	Antioxidant Triggered Metallic 1T' Phase Transformations of Chemically Exfoliated Tungsten Disulfide (WS ₂) Nanosheets (Small 12/2022). Small, 2022, 18, .	5.2	0
6	Adhesion enhancement between aluminum and butyl rubber by (3-mercaptopropyl) trimethoxy silane for vibration damping plate. Journal of Adhesion Science and Technology, 2021, 35, 1114-1124.	1.4	6
7	Self-Assembled 2D Networks of Metal Oxide Nanomaterials Enabling Sub-ppm Level Breathalyzers. ACS Sensors, 2021, 6, 3195-3203.	4.0	11
8	Thermoelectric energy harvesting electronic skin (e-skin) Patch with reconfigurable carbon nanotube clays. Nano Energy, 2021, 87, 106156.	8.2	35
9	Low-molecular weight polydimethylsiloxane, a versatile performance enhancer for the solution processed indium tin oxide transparent electrode. Applied Surface Science, 2020, 503, 144308.	3.1	5
10	Long-term stable NbSe2 nanosheet aqueous ink for printable electronics. Applied Surface Science, 2020, 504, 144342.	3.1	10
11	Hybrid poly (3-hexylthiophene) (P3HT) nanomesh/ZnO nanorod p-n junction visible photocatalyst for efficient indoor air purification. Applied Surface Science, 2019, 496, 143641.	3.1	13
12	Multi-dimensional nanocomposites for stretchable thermoelectric applications. Applied Physics Letters, 2019, 114, .	1.5	20
13	Significant impact of Pd nanoparticle and CdS nanolayer of Pd@CdS@ZnO core-shell nanorods on enhancing catalytic, photoelectrochemical and photocurrent generation activity. Electrochimica Acta, 2019, 298, 694-703.	2.6	20
14	Blocking of the 1T-to-2H phase transformation of chemically exfoliated transition metal disulfides by using a "lattice lock― Nano Energy, 2019, 56, 65-73.	8.2	23
15	A Disposable Photovoltaic Patch Controlling Cellular Microenvironment for Wound Healing. International Journal of Molecular Sciences, 2018, 19, 3025.	1.8	12
16	Synergetic impact of surface plasmon hot electron and CuS nanolayer of CuS/Au/ZnO core-shell nanorods for the degradation of toxic pollutant. Journal of Industrial and Engineering Chemistry, 2018, 66, 468-477.	2.9	30
17	Lattice Transparency of Graphene. Nano Letters, 2017, 17, 1711-1718.	4.5	35
18	The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process. Applied Surface Science, 2017, 405, 344-349.	3.1	44

TAE IL LEE

#	Article	IF	CITATIONS
19	Nonlinear piezoelectric dual sensor for the detection of angle and radius of a bending deformation. Nano Energy, 2017, 38, 232-238.	8.2	15
20	Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation. ACS Applied Materials & Interfaces, 2017, 9, 38344-38355.	4.0	29
21	Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role. Nanotechnology, 2017, 28, 495708.	1.3	5
22	Simple Interface Engineering of Graphene Transistors with Hydrophobizing Stamps. ACS Applied Materials & Interfaces, 2016, 8, 14307-14312.	4.0	4
23	Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy and Environmental Science, 2016, 9, 1696-1705.	15.6	237
24	Electrically conductive antiâ€reflecting nanostructure for chalcogenide thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 813-820.	4.4	2
25	Improved bias stress stability of In–Ga–Zn–O thin film transistors by UV–ozone treatments of channel/dielectric interfaces. Materials Science in Semiconductor Processing, 2015, 30, 469-475.	1.9	8
26	Highâ€Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly. Advanced Materials, 2013, 25, 2920-2925.	11.1	151
27	All-solution-processed, transparent thin-film transistors based on metal oxides and single-walled carbon nanotubes. Journal of Materials Chemistry C, 2013, 1, 1840.	2.7	29
28	Mass production of a 3D non-woven nanofabric with crystalline P3HT nanofibrils for organic solar cells. Energy and Environmental Science, 2013, 6, 910.	15.6	14
29	Highly efficient inverted polymer solar cells with reduced graphene-oxide-zinc-oxide nanocomposites buffer layer. Applied Physics Letters, 2013, 102, .	1.5	32
30	Highly Bendable Large-Area Printed Bulk Heterojunction Film Prepared by the Self-Seeded Growth of Poly(3-hexylthiophene) Nanofibrils. Macromolecules, 2013, 46, 3534-3543.	2.2	38
31	Playing with Dimensions: Rational Design for Heteroepitaxial p–n Junctions. Nano Letters, 2012, 12, 68-76.	4.5	29
32	Self-Seeded Growth of Poly(3-hexylthiophene) (P3HT) Nanofibrils by a Cycle of Cooling and Heating in Solutions. Macromolecules, 2012, 45, 7504-7513.	2.2	115
33	Self-regulating pseudo-monolayer printing of percolating networks of ZnO nanostructures for macroelectronics. Journal of Materials Chemistry, 2011, 21, 2303-2309.	6.7	1
34	Intrinsic memory behavior of rough silicon nanowires and enhancement via facile Ag NPs decoration. Journal of Materials Chemistry, 2011, 21, 13256.	6.7	14
35	A simple and rapid formation of wet chemical etched silicon nanowire films at the air–water interface. Journal of Materials Chemistry, 2011, 21, 14203.	6.7	7
36	Driving vertical phase separation in a bulk-heterojunction by inserting a poly(3-hexylthiophene) layer for highly efficient organic solar cells. Applied Physics Letters, 2011, 98, 023303.	1.5	52

TAE IL LEE

#	Article	IF	CITATIONS
37	Coating on a Cold Substrate Largely Enhances Power Conversion Efficiency of the Bulk Heterojunction Solar Cell. Macromolecular Rapid Communications, 2011, 32, 1066-1071.	2.0	16
38	Binderâ€Free and Full Electricalâ€Addressing Freeâ€6tanding Nanosheets with Carbon Nanotube Fabrics for Electrochemical Applications. Advanced Materials, 2011, 23, 4711-4715.	11.1	23
39	General route of nanowire field effect transistor. , 2010, , .		0
40	Programmable Direct-Printing Nanowire Electronic Components. Nano Letters, 2010, 10, 1016-1021.	4.5	27
41	Electrical Contact Tunable Direct Printing Route for a ZnO Nanowire Schottky Diode. Nano Letters, 2010, 10, 3517-3523.	4.5	23
42	Random network transistor arrays of embedded ZnO nanorods in ion-gel gate dielectric. Journal of Materials Chemistry, 2010, 20, 7393.	6.7	34
43	Formation of stable direct current microhollow cathode discharge by venturi gas flow system for remote plasma source in atmosphere. Applied Physics Letters, 2008, 92, 061503.	1.5	3