John Löfblom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118526/publications.pdf

Version: 2024-02-01

82 papers

3,038 citations

172457 29 h-index 52 g-index

84 all docs

84 docs citations

84 times ranked 3061 citing authors

#	Article	IF	CITATIONS
1	Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Letters, 2010, 584, 2670-2680.	2.8	521
2	Affibody Molecules in Biotechnological and Medical Applications. Trends in Biotechnology, 2017, 35, 691-712.	9.3	259
3	Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. Journal of Applied Microbiology, 2007, 102, 736-747.	3.1	132
4	Optimizing Membrane Protein Overexpression in the Escherichia coli strain Lemo21(DE3). Journal of Molecular Biology, 2012, 423, 648-659.	4.2	132
5	Non-immunoglobulin based protein scaffolds. Current Opinion in Biotechnology, 2011, 22, 843-848.	6.6	128
6	Epitope mapping of antibodies using bacterial surface display. Nature Methods, 2008, 5, 1039-1045.	19.0	90
7	Bacterial display in combinatorial protein engineering. Biotechnology Journal, 2011, 6, 1115-1129.	3.5	90
8	A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry. Protein Engineering, Design and Selection, 2008, 21, 247-255.	2.1	68
9	Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules. Protein Engineering, Design and Selection, 2011, 24, 385-396.	2.1	62
10	Inhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification. PLoS ONE, 2013, 8, e62791.	2.5	61
11	Affibody-mediated PET imaging of HER3 expression in malignant tumours. Scientific Reports, 2015, 5, 15226.	3.3	56
12	Surface display of a single-domain antibody library on Gram-positive bacteria. Cellular and Molecular Life Sciences, 2013, 70, 1081-1093.	5.4	53
13	PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules. International Journal of Oncology, 2016, 48, 1325-1332.	3.3	50
14	Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin. PLoS ONE, 2014, 9, e103094.	2.5	50
15	Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albuminâ€binding domain allows for affinity purification and in vivo halfâ€life extension. Biotechnology Journal, 2014, 9, 1215-1222.	3.5	46
16	Fine affinity discrimination by normalized fluorescence activated cell sorting in staphylococcal surface display. FEMS Microbiology Letters, 2005, 248, 189-198.	1.8	45
17	An engineered affibody molecule with pH-dependent binding to FcRn mediates extended circulatory half-life of a fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17110-17115.	7.1	43
18	Evaluation of Staphylococcal Cell Surface Display and Flow Cytometry for Postselectional Characterization of Affinity Proteins in Combinatorial Protein Engineering Applications. Applied and Environmental Microbiology, 2007, 73, 6714-6721.	3.1	40

#	Article	IF	Citations
19	Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1450-1459.	6.4	40
20	Cellular Effects of HER3-Specific Affibody Molecules. PLoS ONE, 2012, 7, e40023.	2.5	39
21	Engineering Bispecificity into a Single Albumin-Binding Domain. PLoS ONE, 2011, 6, e25791.	2.5	37
22	Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs, 2016, 8, 1195-1209.	5.2	37
23	Staphylococcus carnosus: from starter culture to protein engineering platform. Applied Microbiology and Biotechnology, 2017, 101, 8293-8307.	3.6	36
24	A truncated and dimeric format of an Affibody library on bacteria enables FACSâ€mediated isolation of amyloidâ€beta aggregation inhibitors with subnanomolar affinity. Biotechnology Journal, 2015, 10, 1707-1718.	3.5	35
25	Comparative Evaluation of Two DARPin Variants: Effect of Affinity, Size, and Label on Tumor Targeting Properties. Molecular Pharmaceutics, 2019, 16, 995-1008.	4.6	35
26	Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Scientific Reports, 2019, 9, 9405.	3.3	34
27	Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Scientific Reports, 2014, 4, 7518.	3.3	31
28	Cyclic versus Noncyclic Chelating Scaffold for ⁸⁹ Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression. Molecular Pharmaceutics, 2018, 15, 175-185.	4.6	31
29	Comparative evaluation of 111In-labeled NOTA-conjugated affibody molecules for visualization of HER3 expression in malignant tumors. Oncology Reports, 2015, 34, 1042-1048.	2.6	30
30	Comparative Evaluation of Affibody Molecules for Radionuclide Imaging of in Vivo Expression of Carbonic Anhydrase IX. Molecular Pharmaceutics, 2016, 13, 3676-3687.	4.6	30
31	The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule. Scientific Reports, 2017, 7, 5961.	3.3	29
32	Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cellular and Molecular Life Sciences, 2013, 70, 3973-3985.	5.4	28
33	Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator. International Journal of Oncology, 2016, 49, 2285-2293.	3.3	27
34	Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics, 2018, 8, 4462-4476.	10.0	25
35	¹⁸⁸ Re-Z _{HER2:V2} , a Promising Affibody-Based Targeting Agent Against HER2-Expressing Tumors: Preclinical Assessment. Journal of Nuclear Medicine, 2014, 55, 1842-1848.	5.0	23
36	Staphylococcal Surface Display in Combinatorial Protein Engineering and Epitope Mapping of Antibodies. Recent Patents on Biotechnology, 2010, 4, 171-182.	0.8	22

#	Article	IF	CITATIONS
37	Preclinical Evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells, 2018, 7, 141.	4.1	21
38	Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers. International Journal of Molecular Sciences, 2019, 20, 1080.	4.1	21
39	In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic affibody construct. Scientific Reports, 2017, 7, 43118.	3.3	20
40	An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Microbial Cell Factories, 2014, 13, 179.	4.0	19
41	Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with 188Re. European Journal of Medicinal Chemistry, 2014, 87, 519-528.	5.5	19
42	Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs. Cells, 2018, 7, 164.	4.1	19
43	Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab. Molecular Pharmaceutics, 2018, 15, 3394-3403.	4.6	19
44	Comparison of tumor‑targeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2. International Journal of Oncology, 2019, 54, 1209-1220.	3.3	19
45	Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cellular and Molecular Life Sciences, 2016, 73, 1671-1683.	5.4	18
46	Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111. Scientific Reports, 2019, 9, 655.	3.3	18
47	Exploring epitopes of antibodies toward the human tryptophanyl-tRNA synthetase. New Biotechnology, 2010, 27, 129-137.	4.4	17
48	A new prodrug form of Affibody molecules (pro-Affibody) is selectively activated by cancer-associated proteases. Cellular and Molecular Life Sciences, 2015, 72, 1405-1415.	5.4	17
49	Identification of proteins that specifically recognize and bind protofibrillar aggregates of amyloid- \hat{l}^2 . Scientific Reports, 2017, 7, 5949.	3.3	17
50	Affinity proteins and their generation. Journal of Chemical Technology and Biotechnology, 2013, 88, 25-38.	3.2	16
51	Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules. Amino Acids, 2018, 50, 981-994.	2.7	16
52	Affibody-Mediated Sequestration of Amyloid \hat{l}^2 Demonstrates Preventive Efficacy in a Transgenic Alzheimerâ \in ^{Ms} Disease Mouse Model. Frontiers in Aging Neuroscience, 2019, 11, 64.	3.4	16
53	Staphylococcal display for combinatorial protein engineering of a headâ€toâ€tail affibody dimer binding the Alzheimer amyloidâ€î² peptide. Biotechnology Journal, 2013, 8, 139-145.	3.5	14
54	Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts. Scientific Reports, 2019, 9, 14907.	3.3	14

#	Article	IF	Citations
55	Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules. Scientific Reports, 2019, 9, 17710.	3.3	14
56	Parallel Immunizations of Rabbits Using the Same Antigen Yield Antibodies with Similar, but Not Identical, Epitopes. PLoS ONE, 2012, 7, e45817.	2.5	13
57	Simplified characterization through site-specific protease-mediated release of affinity proteins selected by staphylococcal display. FEMS Microbiology Letters, 2008, 278, 128-136.	1.8	12
58	An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor. International Journal of Molecular Sciences, 2020, 21, 2999.	4.1	12
59	Epitope Mapping Using Gramâ€Positive Surface Display. Current Protocols in Immunology, 2010, 90, Unit9.9.	3.6	11
60	Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. International Journal of Oncology, 2017, 51, 1765-1774.	3.3	10
61	The Use of a Non-Conventional Long-Lived Gallium Radioisotope 66Ga Improves Imaging Contrast of EGFR Expression in Malignant Tumours Using DFO-ZEGFR:2377 Affibody Molecule. Pharmaceutics, 2021, 13, 292.	4.5	10
62	Insights from engineering the Affibody-Fc interaction with a computational-experimental method. Protein Engineering, Design and Selection, 2017, 30, 593-601.	2.1	9
63	Autotransporterâ€Mediated Display of a NaÃ⁻ve Affibody Library on the Outer Membrane of <i>Escherichia coli</i> . Biotechnology Journal, 2019, 14, e1800359.	3.5	9
64	Evaluating the Therapeutic Efficacy of Mono- and Bivalent Affibody-Based Fusion Proteins Targeting HER3 in a Pancreatic Cancer Xenograft Model. Pharmaceutics, 2020, 12, 551.	4.5	9
65	Benefit of Later-Time-Point PET Imaging of HER3 Expression Using Optimized Radiocobalt-Labeled Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1972.	4.1	9
66	Investigating affinity-maturation strategies and reproducibility of fluorescence-activated cell sorting using a recombinant ADAPT library displayed on staphylococci. Protein Engineering, Design and Selection, 2016, 29, 187-195.	2.1	8
67	Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Scientific Reports, 2019, 9, 6779.	3.3	8
68	Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method. Biological Chemistry, 2019, 400, 405-415.	2.5	8
69	Discovery, optimization and biodistribution of an Affibody molecule for imaging of CD69. Scientific Reports, 2021, 11, 19151.	3.3	8
70	Protease substrate profiling using bacterial display of selfâ€blocking affinity proteins and flowâ€cytometric sorting. Biotechnology Journal, 2017, 12, 1600365.	3.5	7
71	Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1312.	4.1	7
72	Robust Expression of the Human Neonatal Fc Receptor in a Truncated Soluble Form and as a Full-Length Membrane-Bound Protein in Fusion with eGFP. PLoS ONE, 2013, 8, e81350.	2.5	7

#	Article	IF	CITATIONS
73	A protease substrate profiling method that links siteâ€specific proteolysis with antibiotic resistance. Biotechnology Journal, 2014, 9, 155-162.	3.5	6
74	HER3 PET Imaging: 68Ga-Labeled Affibody Molecules Provide Superior HER3 Contrast to 89Zr-Labeled Antibody and Antibody-Fragment-Based Tracers. Cancers, 2021, 13, 4791.	3.7	6
75	Increasing thermal stability and improving biodistribution of VEGFR2-binding affibody molecules by a combination of in silico and directed evolution approaches. Scientific Reports, 2020, 10, 18148.	3.3	5
76	Dissecting the Structural Organization of Multiprotein Amyloid Aggregates Using a Bottom-Up Approach. ACS Chemical Neuroscience, 2020, 11, 1447-1457.	3.5	5
77	Affibodyâ€'mediated imaging of EGFR expression in prostate cancer using radiocobaltâ€'labeled DOTAâ€'ZEGFR:2377. Oncology Reports, 2018, 41, 534-542.	2.6	4
78	Flowâ€cytometric screening of aggregationâ€inhibitors using a fluorescenceâ€assisted intracellular method. Biotechnology Journal, 2017, 12, 1600364.	3.5	3
79	VEGFR2-Specific Ligands Based on Affibody Molecules Demonstrate Agonistic Effects when Tetrameric in the Soluble Form or Immobilized via Spider Silk. ACS Biomaterials Science and Engineering, 2019, 5, 6474-6484.	5.2	2
80	Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules. Biomedicines, 2022, 10, 1293.	3.2	2
81	P3-050: An Affibody to Monomeric A \hat{l}^2 as a Novel Therapeutic Approach for Alzheimer's Disease Pathology. , 2016, 12, P835-P836.		1
82	Transferrin Receptor Binding BBB-Shuttle Facilitates Brain Delivery of Anti-AÎ 2 -Affibodies. Pharmaceutical Research, 2022, , 1.	3.5	1