Michaela C Kollisch-Singule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Medicine Experimental, 2016, 4, 11.	0.9	81
2	Mechanical Breath Profile of Airway Pressure Release Ventilation. JAMA Surgery, 2014, 149, 1138.	2.2	72
3	Airway Pressure Release Ventilation Reduces Conducting Airway Micro-Strain in Lung Injury. Journal of the American College of Surgeons, 2014, 219, 968-976.	0.2	58
4	Acute lung injury: how to stabilize a broken lung. Critical Care, 2018, 22, 136.	2.5	53
5	Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: physiologically informed modification of airway pressure release ventilation. Annals of Intensive Care, 2020, 10, 3.	2.2	53
6	Effect of Airway Pressure Release Ventilation on Dynamic Alveolar Heterogeneity. JAMA Surgery, 2016, 151, 64.	2.2	49
7	The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury. Intensive Care Medicine Experimental, 2015, 3, 35.	0.9	42
8	Predicting the response of the injured lung to the mechanical breath profile. Journal of Applied Physiology, 2015, 118, 932-940.	1.2	40
9	The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model. Intensive Care Medicine Experimental, 2017, 5, 25.	0.9	38
10	Physiology in Medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury. Journal of Applied Physiology, 2017, 122, 1516-1522.	1.2	37
11	A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Frontiers in Physiology, 2020, 11, 227.	1.3	32
12	Electroporation-Mediated Gene Delivery of Na+,K+-ATPase, and ENaC Subunits to the Lung Attenuates Acute Respiratory Distress Syndrome in a Two-Hit Porcine Model. Shock, 2015, 43, 16-23.	1.0	25
13	Excessive Extracellular ATP Desensitizes P2Y2 and P2X4 ATP Receptors Provoking Surfactant Impairment Ending in Ventilation-Induced Lung Injury. International Journal of Molecular Sciences, 2018, 19, 1185.	1.8	22
14	The time-controlled adaptive ventilation protocol: mechanistic approach to reducing ventilator-induced lung injury. European Respiratory Review, 2019, 28, 180126.	3.0	21
15	Alveolar instability (atelectrauma) is not identified by arterial oxygenation predisposing the development of an occult ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 54.	0.9	19
16	Limiting ventilator-associated lung injury in a preterm porcine neonatal model. Journal of Pediatric Surgery, 2017, 52, 50-55.	0.8	19
17	Enteral administration of bacteria fermented formula in newborn piglets: A high fidelity model for necrotizing enterocolitis (NEC). PLoS ONE, 2018, 13, e0201172.	1.1	19
18	Determining the light scattering and absorption parameters from forward-directed flux measurements in cardiac tissue. Journal of Biomedical Optics, 2017, 22, 076009.	1.4	13

#	Article	IF	CITATIONS
19	Preemptive mechanical ventilation based on dynamic physiology in the alveolar microenvironment: Novel considerations of time-dependent properties of the respiratory system. Journal of Trauma and Acute Care Surgery, 2018, 85, 1081-1091.	1.1	13
20	Looking beyond macroventilatory parameters and rethinking ventilator-induced lung injury. Journal of Applied Physiology, 2018, 124, 1214-1218.	1.2	12
21	Preemptive mechanical ventilation can block progressive acute lung injury. World Journal of Critical Care Medicine, 2016, 5, 74.	0.8	10
22	Mechanical Ventilation Lessons Learned From Alveolar Micromechanics. Frontiers in Physiology, 2020, 11, 233.	1.3	9
23	Last Word on Viewpoint: Looking beyond macrovenitlatory parameters and rethinking ventilator-induced lung injury. Journal of Applied Physiology, 2018, 124, 1220-1221.	1.2	2
24	Mechanical Ventilation in Pediatric and Neonatal Patients. Frontiers in Physiology, 2021, 12, 805620.	1.3	2
25	A Ventilator Mode Cannot Set Itself, Nor Can It Be Solely Responsible for Outcomes*. Critical Care Medicine, 2022, 50, 695-699.	0.4	2
26	Assessment of Heterogeneity in Lung Structure and Function During Mechanical Ventilation: A Review of Methodologies. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2022, , .	0.3	2
27	Alveolar Overdistension Does Not Occur Even at Very High Airway Pressure. FASEB Journal, 2015, 29, 1016.1.	0.2	1
28	Nano-chemically Modified Tetracycline-3 (nCMT-3) Attenuates Acute Lung Injury via Blocking sTREM-1 Release and NLRP3 Inflammasome Activation. Shock, 2022, 57, 749-758.	1.0	1
29	Monocyte Levels Differ Between Diabetic and Non-Diabetic Patients With Peripheral Arterial Disease After Lower Extremity Revascularization. Journal of Surgical Research, 2013, 179, 337.	0.8	0
30	712. Critical Care Medicine, 2014, 42, A1531.	0.4	0
31	693. Critical Care Medicine, 2015, 43, 175.	0.4	0
32	Failure to Disclose Conflicts of Interest. JAMA Surgery, 2016, 151, 1190.	2.2	0
33	1008: LOW TIDAL VOLUME DOES NOT ALWAYS REDUCE LUNG INJURY. Critical Care Medicine, 2016, 44, 328-328.	0.4	0
34	Sustained Elevation in Monocyte Levels in Diabetic Patients after Infra- Inguinal Revascularization. Journal of Vascular and Endovascular Surgery, 2018, 01, .	0.1	0
35	Reply to Drs. Monjezi and Jamaati: Dynamic alveolar mechanics are more than a soap bubble on a capillary tube. Journal of Applied Physiology, 2018, 124, 525-525.	1.2	0
36	Cervical Lymph Node Biopsy. , 2019, , 379-380.		0