Clara Dees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/211797/publications.pdf

Version: 2024-02-01

48 papers

3,959 citations

32 h-index 214721 47 g-index

48 all docs 48 docs citations

48 times ranked

5584 citing authors

#	Article	IF	CITATIONS
1	Activation of canonical Wnt signalling is required for TGF- \hat{l}^2 -mediated fibrosis. Nature Communications, 2012, 3, 735.	5.8	649
2	Orphan nuclear receptor NR4A1 regulates transforming growth factor- \hat{l}^2 signaling and fibrosis. Nature Medicine, 2015, 21, 150-158.	15.2	267
3	Platelet-derived serotonin links vascular disease and tissue fibrosis. Journal of Experimental Medicine, 2011, 208, 961-972.	4.2	222
4	\hat{l}^2 -catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 761-767.	0.5	174
5	The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Annals of the Rheumatic Diseases, 2014, 73, 1232-1239.	0.5	166
6	Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Annals of the Rheumatic Diseases, 2017, 76, 1941-1948.	0.5	149
7	Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis and Rheumatism, 2012, 64, 2724-2733.	6.7	133
8	PU.1 controls fibroblast polarization and tissue fibrosis. Nature, 2019, 566, 344-349.	13.7	121
9	Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Annals of the Rheumatic Diseases, 2011, 70, 1304-1310.	0.5	116
10	JAKâ€⊋ as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis and Rheumatism, 2012, 64, 3006-3015.	6.7	115
11	Vitamin D receptor regulates TGF- \hat{l}^2 signalling in systemic sclerosis. Annals of the Rheumatic Diseases, 2015, 74, e20-e20.	0.5	111
12	Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis and Rheumatism, 2011, 63, 1396-1404.	6.7	107
13	The cannabinoid receptor CB2 exerts antifibrotic effects in experimental dermal fibrosis. Arthritis and Rheumatism, 2009, 60, 1129-1136.	6.7	106
14	Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2013, 72, 1255-1258.	0.5	98
15	Inhibition of glycogen synthase kinase 3Â induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the Rheumatic Diseases, 2011, 70, 2191-2198.	0.5	96
16	Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical $TGF\hat{l}^2$ signalling. Annals of the Rheumatic Diseases, 2015, 74, 1408-1416.	0.5	92
17	The tyrosine phosphatase SHP2 controls $TGF\hat{l}^2$ -induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nature Communications, 2018, 9, 3259.	5.8	89
18	Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Annals of the Rheumatic Diseases, 2016, 75, 623-626.	0.5	78

#	Article	IF	CITATIONS
19	TGF- $\hat{l}^2\hat{a}$ \in "induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. Journal of Clinical Investigation, 2020, 130, 2347-2363.	3.9	76
20	Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 1019-1026.	0.5	74
21	Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 785-789.	0.5	73
22	Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Annals of the Rheumatic Diseases, 2015, 74, 1621-1625.	0.5	60
23	Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood, 2012, 120, 2909-2917.	0.6	53
24	The transcription factor GLI2 as a downstream mediator of transforming growth factor- \hat{l}^2 -induced fibroblast activation in SSc. Annals of the Rheumatic Diseases, 2017, 76, 756-764.	0.5	53
25	S100A4 amplifies TGF- $\hat{1}^2$ -induced fibroblast activation in systemic sclerosis. Annals of the Rheumatic Diseases, 2015, 74, 1748-1755.	0.5	52
26	The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Annals of the Rheumatic Diseases, 2018, 77, 150-158.	0.5	51
27	Canonical <scp>Wnt</scp> signalling as a key regulator of fibrogenesis – implications for targeted therapies?. Experimental Dermatology, 2013, 22, 710-713.	1.4	49
28	Inhibition of casein kinase II reduces $TGF\hat{l}^2$ induced fibroblast activation and ameliorates experimental fibrosis. Annals of the Rheumatic Diseases, 2015, 74, 936-943.	0.5	45
29	JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Annals of the Rheumatic Diseases, 2017, 76, 1467-1475.	0.5	41
30	Cellular and molecular mechanisms in fibrosis. Experimental Dermatology, 2021, 30, 121-131.	1.4	39
31	Tribbles homologue 3 stimulates canonical TGF- \hat{l}^2 signalling to regulate fibroblast activation and tissue fibrosis. Annals of the Rheumatic Diseases, 2016, 75, 609-616.	0.5	38
32	Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Annals of the Rheumatic Diseases, 2018, 77, 744-751.	0.5	36
33	Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Annals of the Rheumatic Diseases, 2018, 77, 459-459.	0.5	33
34	Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis. Annals of the Rheumatic Diseases, 2016, 75, 2037-2044.	0.5	29
35	Combined Inhibition of c-Abl and PDGF Receptors for Prevention and Treatment of Murine Sclerodermatous Chronic Graft-versus-Host Disease. American Journal of Pathology, 2012, 181, 1672-1680.	1.9	28
36	Activation of liver X receptors inhibits experimental fibrosis by interfering with interleukin-6 release from macrophages. Annals of the Rheumatic Diseases, 2015, 74, 1317-1324.	0.5	28

#	Article	IF	Citations
37	Activating transcription factor 3 regulates canonical $TGF\hat{l}^2$ signalling in systemic sclerosis. Annals of the Rheumatic Diseases, 2016, 75, 586-592.	0.5	28
38	Composition of TWIST1 dimers regulates fibroblast activation and tissue fibrosis. Annals of the Rheumatic Diseases, 2017, 76, 244-251.	0.5	28
39	Fibroblast growth factor receptor 3 activates a network of profibrotic signaling pathways to promote fibrosis in systemic sclerosis. Science Translational Medicine, 2020, 12, .	5.8	26
40	Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis. Archives of Dermatological Research, 2013, 305, 1-8.	1.1	25
41	Levels of target activation predict antifibrotic responses to tyrosine kinase inhibitors. Annals of the Rheumatic Diseases, 2013, 72, 2039-2046.	0.5	20
42	PGC- \hat{l} t regulates autophagy to promote fibroblast activation and tissue fibrosis. Annals of the Rheumatic Diseases, 2020, 79, 1227-1233.	0.5	19
43	Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. British Journal of Pharmacology, 2020, 177, 4296-4309.	2.7	19
44	From pathogenesis to therapy – Perspective on treatment strategies in fibrotic diseases. Pharmacological Research, 2015, 100, 93-100.	3.1	17
45	Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation. Journal of Experimental Medicine, 2021, 218, .	4.2	16
46	Targeting of canonical WNT signaling ameliorates experimental sclerodermatous chronic graft-versus-host disease. Blood, 2021, 137, 2403-2416.	0.6	11
47	X-linked inhibitor of apoptosis protein (XIAP) inhibition in systemic sclerosis (SSc). Annals of the Rheumatic Diseases, 2021, 80, 1048-1056.	0.5	3
48	A8.3â€Deficit of S100A4 Prevents Joint Destruction and Systemic Bone Loss in hTNFtg Mouse Model. Annals of the Rheumatic Diseases, 2013, 72, A58.1-A58.	0.5	0