Shula Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117940/publications.pdf Version: 2024-02-01

SHULA CHEN

#	Article	IF	CITATIONS
1	A Waveguide-Integrated Two-Dimensional Light-Emitting Diode Based on p-Type WSe ₂ /n-Type CdS Nanoribbon Heterojunction. ACS Nano, 2022, 16, 4371-4378.	14.6	17
2	Photoluminescence Lightening: Extraordinary Oxygen Modulated Dynamics in WS ₂ Monolayers. Nano Letters, 2022, 22, 2112-2119.	9.1	16
3	Defect-induced distinct exciton-exciton interactions in WS2 monolayers. Science China Materials, 2022, 65, 2502-2510.	6.3	4
4	Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light: Science and Applications, 2022, 11, .	16.6	29
5	Efficient control of emission and carrier polarity in WS2 monolayer by indium doping. Science China Materials, 2021, 64, 1449-1456.	6.3	21
6	An Efficient Deep-Subwavelength Second Harmonic Nanoantenna Based on Surface Plasmon-Coupled Dilute Nitride GaNP Nanowires. Nano Letters, 2021, 21, 3426-3434.	9.1	6
7	Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light: Science and Applications, 2021, 10, 72.	16.6	184
8	Phase Tailoring of Ruddlesden–Popper Perovskite at Fixed Large Spacer Cation Ratio. Small, 2021, 17, e2100560.	10.0	10
9	Room temperature near unity spin polarization in 2D Van der Waals heterostructures. Nature Communications, 2020, 11, 4442.	12.8	44
10	Effect of Crystal Symmetry on the Spin States of Fe ³⁺ and Vibration Modes in Lead-free Double-Perovskite Cs ₂ AgBi(Fe)Br ₆ . Journal of Physical Chemistry Letters, 2020, 11, 4873-4878.	4.6	11
11	Nearâ€Unity Polarization of Valleyâ€Dependent Secondâ€Harmonic Generation in Stacked TMDC Layers and Heterostructures at Room Temperature. Advanced Materials, 2020, 32, e1908061.	21.0	36
12	Wavelengthâ€Tunable Midâ€Infrared Lasing from Black Phosphorus Nanosheets. Advanced Materials, 2020, 32, e1808319.	21.0	56
13	Mechanism of Extreme Optical Nonlinearities in Spiral WS ₂ above the Bandgap. Nano Letters, 2020, 20, 2667-2673.	9.1	25
14	An Electrically Controlled Wavelength-Tunable Nanoribbon Laser. ACS Nano, 2020, 14, 3397-3404.	14.6	26
15	Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nature Communications, 2020, 11, 617.	12.8	28
16	Effect of exciton transfer on recombination dynamics in vertically nonuniform GaAsSb epilayers. Applied Physics Letters, 2019, 114, .	3.3	7
17	Effects of N implantation on defect formation in ZnO nanowires. Thin Solid Films, 2019, 687, 137449.	1.8	9
18	WO ₃ –WS ₂ Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. Journal of the American Chemical Society, 2019, 141, 11754-11758.	13.7	69

SHULA CHEN

#	Article	IF	CITATIONS
19	Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure. Nano Letters, 2019, 19, 7217-7225.	9.1	42
20	Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures. ACS Nano, 2019, 13, 7996-8003.	14.6	64
21	Identification of a Nitrogen-related acceptor in ZnO nanowires. Nanoscale, 2019, 11, 10921-10926.	5.6	5
22	Near-Infrared Lasing at 1 μm from a Dilute-Nitride-Based Multishell Nanowire. Nano Letters, 2019, 19, 885-890.	9.1	28
23	Controlled Synthesis and Photonics Applications of Metal Halide Perovskite Nanowires. Small Methods, 2019, 3, 1800294.	8.6	45
24	Room-temperature polarized spin-photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects. Nature Communications, 2018, 9, 3575.	12.8	16
25	Effects of Strong Band-Tail States on Exciton Recombination Dynamics in Dilute Nitride GaP/GaNP Core/Shell Nanowires. Journal of Physical Chemistry C, 2018, 122, 19212-19218.	3.1	10
26	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	27.5	701
27	Temperature-dependent radiative and non-radiative dynamics of photo-excited carriers in extremely high-density and small InGaN nanodisks fabricated by neutral-beam etching using bio-nano-templates. Journal of Applied Physics, 2018, 123, 204305.	2.5	2
28	Effects of Nitrogen Incorporation on Structural and Optical Properties of GaNAsP Nanowires. Journal of Physical Chemistry C, 2017, 121, 7047-7055.	3.1	12
29	Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. Nano Letters, 2017, 17, 1775-1781.	9.1	45
30	Optical Study of Sub-10 nm In _{0.3} Ga _{0.7} N Quantum Nanodisks in GaN Nanopillars. ACS Photonics, 2017, 4, 1851-1857.	6.6	15
31	Core–shell carrier and exciton transfer in GaAs/GaNAs coaxial nanowires. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 04J104.	1.2	5
32	Transient photoluminescence study on spin dynamics in InGaAs-based coupled nanostructures of quantum dots with quantum wells. , 2016, , .		0
33	Defect formation in GaAs/GaNxAs1-x core/shell nanowires. Applied Physics Letters, 2016, 109, .	3.3	12
34	Growth optimization of spin-transport barriers used for spin-polarized light-emitting diodes based on InGaAs quantum dots. , 2016, , .		0
35	Nanometer scale fabrication and optical response of InGaN/GaN quantum disks. Nanotechnology, 2016, 27, 425401.	2.6	6
36	Temperature-dependent spin injection dynamics in InGaAs/GaAs quantum well-dot tunnel-coupled nanostructures. Journal of Applied Physics, 2016, 119, .	2.5	10

SHULA CHEN

#	Article	IF	CITATIONS
37	Power-dependent spin amplification in (In, Ga)As/GaAs quantum well via Pauli blocking by tunnel-coupled quantum dot ensembles. Applied Physics Letters, 2016, 108, .	3.3	7
38	Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires. Scientific Reports, 2015, 5, 11653.	3.3	35
39	Magneto-optical properties and recombination dynamics of isoelectronic bound excitons in ZnO. , 2014, , .		1
40	Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires. Applied Physics Letters, 2014, 105, .	3.3	27
41	Spin dynamics of isoelectronic bound excitons in ZnO. Physical Review B, 2014, 89, .	3.2	1
42	Turning ZnO into an Efficient Energy Upconversion Material by Defect Engineering. Advanced Functional Materials, 2014, 24, 3760-3764.	14.9	36
43	Optical properties of GaP/GaNP core/shell nanowires: a temperature-dependent study. Nanoscale Research Letters, 2013, 8, 239.	5.7	7
44	Defect properties of ZnO nanowires revealed from an optically detected magnetic resonance study. Nanotechnology, 2013, 24, 015701.	2.6	15
45	Dynamics of donor bound excitons in ZnO. Applied Physics Letters, 2013, 102, .	3.3	16
46	Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires. Nanotechnology, 2012, 23, 425201.	2.6	35
47	Zeeman splitting and dynamics of an isoelectronic bound exciton near the band edge of ZnO. Physical Review B, 2012, 86, .	3.2	5
48	Efficient upconversion of photoluminescence via two-photon absorption in bulk and nanorod ZnO. Applied Physics B: Lasers and Optics, 2012, 108, 919-924.	2.2	26
49	Mechanism for radiative recombination and defect properties of GaP/GaNP core/shell nanowires. Applied Physics Letters, 2012, 101, 163106.	3.3	30
50	Long delays of light in ZnO caused by excitonâ€polariton propagation. Physica Status Solidi (B): Basic Research, 2012, 249, 1307-1311.	1.5	0
51	Back Cover: Long delays of light in ZnO caused by exciton-polariton propagation (Phys. Status Solidi B) Tj ETQq1	1 0.7843 1.5	14 ₀ gBT /Ove
52	Slowdown of light due to exciton-polariton propagation in ZnO. Physical Review B, 2011, 83, .	3.2	13
53	On the origin of suppression of free exciton no-phonon emission in ZnO tetrapods. Applied Physics Letters, 2010, 96, .	3.3	12
54	Long lifetime of free excitons in ZnO tetrapod structures. Applied Physics Letters, 2010, 96, .	3.3	30