Xiongwen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117762/publications.pdf

Version: 2024-02-01

331670 289244 1,925 109 21 40 citations h-index g-index papers 110 110 110 1909 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT. IEEE Internet of Things Journal, 2020, 7, 4260-4277.	8.7	197
2	Access Control and Resource Allocation for M2M Communications in Industrial Automation. IEEE Transactions on Industrial Informatics, 2019, 15, 3093-3103.	11.3	113
3	Reliable Task Offloading for Vehicular Fog Computing Under Information Asymmetry and Information Uncertainty. IEEE Transactions on Vehicular Technology, 2019, 68, 8322-8335.	6.3	112
4	Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Transactions on Antennas and Propagation, 2001, 49, 1192-1203.	5.1	106
5	Channel Measurements, Modeling, Simulation and Validation at 32 GHz in Outdoor Microcells for 5G Radio Systems. IEEE Access, 2017, 5, 1062-1072.	4.2	96
6	Characterization of doppler spectra for mobile communications at 5.3 GHz. IEEE Transactions on Vehicular Technology, 2003, 52, 14-23.	6.3	86
7	Energy-Efficient Resource Allocation for Energy Harvesting-Based Cognitive Machine-to-Machine Communications. IEEE Transactions on Cognitive Communications and Networking, 2019, 5, 595-607.	7.9	82
8	A Reconfigurable MIMO/UWB MIMO Antenna for Cognitive Radio Applications. IEEE Access, 2019, 7, 46739-46747.	4.2	65
9	A Dual-Band Frequency Reconfigurable MIMO Patch-Slot Antenna Based on Reconfigurable Microstrip Feedline. IEEE Access, 2018, 6, 41450-41457.	4.2	63
10	Learning-Based Queue-Aware Task Offloading and Resource Allocation for Space–Air–Ground-Integrated Power IoT. IEEE Internet of Things Journal, 2021, 8, 5250-5263.	8.7	63
11	Playback of 5G and Beyond Measured MIMO Channels by an ANN-Based Modeling and Simulation Framework. IEEE Journal on Selected Areas in Communications, 2020, 38, 1945-1954.	14.0	55
12	Energy-Minimization Task Offloading and Resource Allocation for Mobile Edge Computing in NOMA Heterogeneous Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 16001-16016.	6.3	54
13	Comparison of SCM, SCME, and WINNER Channel Models. IEEE Vehicular Technology Conference, 2007,	0.4	51
14	Two-Cylinder and Multi-Ring GBSSM for Realizing and Modeling of Vehicle-to-Vehicle Wideband MIMO Channels. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 2787-2799.	8.0	42
15	Joint 3D-Location Planning and Resource Allocation for XAPS-Enabled C-NOMA in 6G Heterogeneous Internet of Things. IEEE Transactions on Vehicular Technology, 2021, 70, 10594-10609.	6.3	35
16	Joint Dynamic Task Offloading and Resource Scheduling for WPT Enabled Space-Air-Ground Power Internet of Things. IEEE Transactions on Network Science and Engineering, 2022, 9, 660-677.	6.4	35
17	Neural network and GBSM based time-varying and stochastic channel modeling for 5G millimeter wave communications. China Communications, 2019, 16, 80-90.	3.2	29
18	Path-Loss Model Including LOS-NLOS Transition Regions for Indoor Corridors at 5 GHz [Wireless Corner]. IEEE Antennas and Propagation Magazine, 2013, 55, 217-223.	1.4	28

#	Article	IF	CITATIONS
19	Multi-Timescale Multi-Dimension Resource Allocation for NOMA-Edge Computing-Based Power IoT With Massive Connectivity. IEEE Transactions on Green Communications and Networking, 2021, 5, 1101-1113.	5.5	26
20	Attenuation by Human Bodies at 26- and 39.5-GHz Millimeter Wavebands. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1229-1232.	4.0	25
21	Dimension Reduction of Channel Correlation Matrix Using CUR-Decomposition Technique for 3-D Massive Antenna System. IEEE Access, 2018, 6, 3031-3039.	4.2	25
22	mmWave channel sounder based on COTS instruments for 5G and indoor channel measurement. , 2016,		24
23	Optimal Task Offloading and Resource Allocation for C-NOMA Heterogeneous Air-Ground Integrated Power Internet of Things Networks. IEEE Transactions on Wireless Communications, 2022, 21, 9276-9292.	9.2	22
24	Service Caching Based Aerial Cooperative Computing and Resource Allocation in Multi-UAV Enabled MEC Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 10934-10947.	6.3	22
25	Hybrid Precoding for an Adaptive Interference Decoding SWIPT System With Full-Duplex IoT Devices. IEEE Internet of Things Journal, 2020, 7, 1164-1177.	8.7	21
26	Energy-Efficient Resource Allocation for Parked-Cars-Based Cellular-V2V Heterogeneous Networks. IEEE Internet of Things Journal, 2022, 9, 3046-3061.	8.7	21
27	MU-MIMO Downlink Capacity Analysis and Optimum Code Weight Vector Design for 5G Big Data Massive Antenna Millimeter Wave Communication. Wireless Communications and Mobile Computing, 2018, 2018, 1-12.	1.2	19
28	Design of MIMO Antenna with an Enhanced Isolation Technique. Electronics (Switzerland), 2020, 9, 1217.	3.1	18
29	Energy-Efficient Routing Algorithm Based on Multiple Criteria Decision Making for Wireless Sensor Networks. Wireless Personal Communications, 2015, 80, 97-115.	2.7	17
30	Single RF-Chain Beam Training for MU-MIMO Energy Efficiency and Information-Centric IoT Millimeter Wave Communications. IEEE Access, 2019, 7, 6597-6610.	4.2	16
31	Task Offloading for Vehicular Fog Computing under Information Uncertainty: A Matching-Learning Approach. , 2019, , .		15
32	A frequency reconfigurable MIMO antenna with agile feedline for cognitive radio applications. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22100.	1.2	14
33	Attenuation by a Human Body and Trees as well as Material Penetration Loss in 26 and 39 GHz Millimeter Wave Bands. International Journal of Antennas and Propagation, 2017, 2017, 1-8.	1.2	13
34	Game and Contract Theory-Based Energy Transaction Management for Internet of Electric Vehicle. IEEE Access, 2020, 8, 203478-203487.	4.2	13
35	MEC in NOMA-HetNets: A Joint Task Offloading and Resource Allocation Approach. , 2021, , .		13
36	Power Allocation Algorithms for Stable Successive Interference Cancellation in Millimeter Wave NOMA Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 5833-5847.	6.3	13

#	Article	IF	Citations
37	Robust Resource Allocation for Lightweight Secure Transmission in Multicarrier NOMA-Assisted Full Duplex IoT Networks. IEEE Internet of Things Journal, 2022, 9, 6443-6457.	8.7	13
38	A 3D geometry-based scattering model for vehicle-to-vehicle wideband MIMO relay-based cooperative channels. China Communications, 2016, 13, 1-10.	3.2	12
39	Mobile-to-Mobile Wideband MIMO Channel Realization by Using a Two-Ring Geometry-Based Stochastic Scattering Model. Wireless Personal Communications, 2015, 84, 2445-2465.	2.7	11
40	A Multi-Radio Multi-Channel Assignment Algorithm Based on Topology Control and Link Interference Weight for a Power Distribution Wireless Mesh Network. Wireless Personal Communications, 2018, 99, 555-566.	2.7	10
41	A Link-Based Variable Probability Learning Approach for Partially Overlapping Channels Assignment on Multi-Radio Multi-Channel Wireless Mesh Information-Centric IoT Networks. IEEE Access, 2019, 7, 45137-45145.	4.2	10
42	A Miniaturized Frequency Reconfigurable Patch Antenna for IoT Applications. Wireless Personal Communications, 2022, 123, 1871-1881.	2.7	10
43	A non-stationary geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels. , 2015, , .		9
44	A Non-Stationary Geometry-Based Street Scattering Model for Vehicle-to-Vehicle Wideband MIMO Channels. Wireless Personal Communications, 2016, 90, 325-338.	2.7	9
45	Doppler Spectra for F2F Radio Channels With Moving Scatterers. IEEE Transactions on Antennas and Propagation, 2016, 64, 4107-4112.	5.1	8
46	Measurements and modelling for D2D indoor wideband MIMO radio channels at 5 GHz. IET Communications, 2016, 10, 1839-1845.	2.2	8
47	28 GHz MIMO Channel Capacity Analysis for 5G Wireless Communication Systems., 2018,,.		8
48	Channel Modeling by RBF Neural Networks for 5G Mm-wave Communication., 2018,,.		7
49	Approach for modelling of broadband lowâ€voltage PLC channels using graph theory. IET Communications, 2018, 12, 1524-1530.	2.2	7
50	Channel sounding, modelling, and characterisation in a large waiting hall of a highâ€speed railway station at 28 GHz. IET Microwaves, Antennas and Propagation, 2019, 13, 2619-2624.	1.4	7
51	Semi-Deterministic Dynamic Millimeter-Wave Channel Modeling Based on an Optimal Neural Network Approach. IEEE Transactions on Antennas and Propagation, 2022, 70, 4082-4095.	5.1	7
52	Wideband Millimeter-Wave Channel Characterization Based on LOS Measurements in an Open Office at 26 GHz. , 2016, , .		6
53	Spectrum Sensing Based on kNN Algorithm for 230 MHz Power Private Networks. , 2018, , .		6
54	5G Millimeter Wave Channel Modeling and Simulations for a High-Voltage Substation. , 2019, , .		6

#	Article	IF	CITATIONS
55	Selection of indoor relay node positions for a threeâ€hop lowâ€voltage broadband power line communication system. IET Communications, 2020, 14, 746-751.	2.2	6
56	SVM-Assisted Adaptive Kernel Power Density Clustering Algorithm for Millimeter Wave Channels. IEEE Transactions on Antennas and Propagation, 2022, 70, 4014-4026.	5.1	6
57	Comparisons of Channel Parameters and Models for Urban Microcells at 2 GHz and 5 GHz [Wireless Corner]. IEEE Antennas and Propagation Magazine, 2014, 56, 260-276.	1.4	5
58	A Novel Full Path-Loss Model for a Street Crossing in Urban Microcells. IEEE Transactions on Antennas and Propagation, 2015, 63, 5878-5883.	5.1	5
59	Doppler Power Spectra for 3D Vehicle-to-Vehicle Channels With Moving Scatterers. IEEE Access, 2018, 6, 42822-42828.	4.2	5
60	Path loss modification and multiâ€user capacity analysis by dynamic rain models for 5G radio communications in millimetre waves. IET Communications, 2019, 13, 1488-1496.	2.2	5
61	An Eight-Element Frequency Reconfigurable MIMO Slot Antenna with Multi-band Tuning Characteristics. Wireless Personal Communications, 2020, 114, 1583-1595.	2.7	5
62	Feasibility Study of Eâ€band mmâ€Wave for Gigabit pointâ€toâ€point Wireless Communications. Microwave and Optical Technology Letters, 2013, 55, 1969-1972.	1.4	4
63	An Eight-Port Frequency Reconfigurable MIMO Slot Antenna with Multi-Band Tuning Characteristics. , 2018, , .		4
64	An Improved KPD Algorithm of Multipath Components Clustering for 5G Millimeter Wave Radio Channels. , 2018, , .		4
65	A Compact Frequency Agile Patch Antenna With Agile Microstrip Feedline. , 2019, , .		4
66	Hybrid precoding with phase shifter reduction for 5G massive antenna multiâ€user systems in millimetre wave. IET Communications, 2019, 13, 2429-2435.	2.2	4
67	Mm-Wave 60 GHz Channel Fading Effects Analysis Based on RBF Neural Network. , 2020, , .		4
68	An ANNâ€based channel modeling in 5G millimeter wave for a highâ€voltage substation. IET Communications, 2021, 15, 2425-2438.	2.2	4
69	60-GHz channel characteristic interdependence investigation for M2M networks. , 2014, , .		3
70	Wideband Millimeter-Wave Channel Characterization in an Open Office at 26ÂGHz. Wireless Personal Communications, 2017, 97, 5059-5075.	2.7	3
71	Millimeter Wave Channel Characterization for a Large Waiting Hall by Measurements and Simulations. , 2018, , .		3
72	Channel Simulation and Validation by QuaDRiGa for Suburban Microcells under 6 GHz., 2018,,.		3

#	Article	IF	Citations
73	A Compact Frequency Reconfigurable MIMO Antenna with Agile Feedline for Cognitive Radio Applications. , $2018, , .$		3
74	Multi-Dimension Resource Allocation for NOMA-Edge Computing-based 6G Power IoT., 2021,,.		3
75	Mobile Edge Computing Task Offloading Based on ADPSO Algorithm in Multi-user Environment. , 2021, , .		3
76	Dynamic-Controlled RIS Assisted Multi-User MISO Downlink System: Joint Beamforming Design. IEEE Transactions on Green Communications and Networking, 2022, 6, 1069-1081.	5.5	3
77	Power Allocation and Performance Analysis in Overlay Cognitive Cooperative V2V Communication System With Outdated CSI. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 21440-21449.	8.0	3
78	Performance Evaluation of Virtual MIMO Multi-User System in a Measured Indoor Environment at 5ÂGHz. Wireless Personal Communications, 2015, 82, 1249-1262.	2.7	2
79	mmWave channel sounder based on COTS instruments for 5G and indoor channel measurement. , 2016, , .		2
80	Codebook metrics evaluation for millimeter wave communications by antenna array response and signal to noise ratio. ITM Web of Conferences, 2018, 17, 03011.	0.5	2
81	A Multi-Service QoS Guaranteed Scheduling Algorithm for TD-LTE 230 MHz Power Wireless Private Networks. , 2018, , .		2
82	Urban Macrocellular Field Strength Prediction for 230 MHz Electric Wireless Private Networks. , 2018, , .		2
83	Online Resource Allocation for Energy Harvesting Based Large-Scale Multiple Antenna Systems. , 2019,		2
84	Robust Beamforming Design for SWIPT-Based Multi-Radio Wireless Mesh Network with Cooperative Jamming. Information (Switzerland), 2020, 11, 138.	2.9	2
85	Improved Strategies of LEACH-based Low Energy Consumption and High Reliable Multi-hop Routing Algorithm for Wireless Sensor Network. , 2020, , .		2
86	Energy-Aware and URLLC-Aware Task Offloading for Internet of Health Things. , 2020, , .		2
87	Multipath Component Clustering Based on Improved Self-organizing Feature Map for 5G Millimeter Wave Radio Channels. , 2021, , .		2
88	An Optimized Algorithm for Dynamic Routing and Wavelength Assignment in WDM Networks with Sparse Wavelength Conversion. IEICE Transactions on Communications, 2015, E98.B, 296-302.	0.7	1
89	Field Strength Prediction for Planning 230 MHz Electric Wireless Private Networks. , 2018, , .		1
90	An efficient edge sparse coding approach to ultraâ€shortâ€term household electricity demand estimation. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 1586-1594.	1.4	1

#	Article	IF	CITATIONS
91	An Efficient Partially Overlapping Channels Assignment for Smart Grid IoT With Differentiated QoS. IEEE Access, 2019, 7, 165207-165216.	4.2	1
92	Modelling and comparison for lowâ€voltage broadband power line noise using LSâ€SVM and wavelet neural networks. IET Communications, 2019, 13, 171-178.	2.2	1
93	An Improved CDL Model for 5G Millimeter Wave Communication in a Substation Scenario., 2020,,.		1
94	Millimetre wave channel modeling based on grey genetic optimization model. IET Communications, 2021, 15, 1240-1248.	2.2	1
95	Codebook-based Beam Tracking for RIS Assisted Mobile MmWave Networks. , 2021, , .		1
96	Reconfigurable Intelligent Surface-Assisted Wireless Communication: Path loss Modeling with Multipath Fading. , 2021, , .		1
97	Parallel Access Scheme for Wireless and Power Line Dual-Connection Communication. IEEE Transactions on Vehicular Technology, 2022, 71, 7997-8001.	6.3	1
98	Performance evaluation of a new tapped-delay-line model for indoor MIMO channels. , 2014, , .		0
99	Effect of External Antenna Patterns for a GMR-1 3G Handset on Satellite Forward Link Radio Channels. Wireless Personal Communications, 2017, 97, 153-161.	2.7	O
100	Channel Modeling Optimization Based on Measurements at 26ÂGHz in an Open Office. Wireless Personal Communications, 2018, 100, 1149-1161.	2.7	0
101	Codebooks design and performance evaluation based on antenna array response and signal to noise ratio for mmWave communication. Journal of International Council on Electrical Engineering, 2018, 8, 163-171.	0.4	0
102	Principal Multipath Component Analysis for Outdoor Microcell Scenario at 39 GHz., 2021, , .		0
103	Corrections to "Game and Contract Theory-Based Energy Transaction Management for Internet of Electric Vehicle― IEEE Access, 2020, 8, 228440-228441.	4.2	0
104	Frequency-Dependent Atmospheric Radio Refractivity Models for THz band., 2021,,.		0
105	Transceiver Beamforming for MmWave Dual-Polarized NOMA Systems. , 2021, , .		0
106	Analysis of Cluster Characteristics for 5G Millimeter Wave Channel in a Substation Scenario., 2021,,.		0
107	Adaptive SVM Assisted Density-based Clustering Algorithm for mmWave Radio Channels. , 2021, , .		0
108	Group-Based Antenna Selection for Massive MIMO. , 2021, , .		0

#	Article	IF	CITATIONS
109	Hybrid millimetreâ€wave channel simulation approach based on long shortâ€ŧerm memory networks. IET Communications, 0, , .	2.2	0