
Imara Y Perera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inositol signaling and plant growth. Trends in Plant Science, 2000, 5, 252-258.	4.3	238
2	Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5838-5843.	3.3	201
3	Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 25, 4894-4911.	3.1	158
4	A Universal Role for Inositol 1,4,5-Trisphosphate-Mediated Signaling in Plant Gravitropism. Plant Physiology, 2006, 140, 746-760.	2.3	157
5	Transgenic <i>Arabidopsis</i> Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling. Plant Cell, 2008, 20, 2876-2893.	3.1	146
6	A Role for Inositol 1,4,5-Trisphosphate in Gravitropic Signaling and the Retention of Cold-Perceived Gravistimulation of Oat Shoot Pulvini. Plant Physiology, 2001, 125, 1499-1507.	2.3	143
7	A Phosphatidylinositol 4-Kinase Pleckstrin Homology Domain That Binds Phosphatidylinositol 4-Monophosphate. Journal of Biological Chemistry, 1998, 273, 22761-22767.	1.6	138
8	Differential Expression of Vacuolar H+-ATPase Subunit c Genes in Tissues Active in Membrane Trafficking and Their Roles in Plant Growth as Revealed by RNAi. Plant Physiology, 2004, 134, 1514-1526.	2.3	114
9	Primary Structures of <i>Arabidopsis</i> Calmodulin Isoforms Deduced from the Sequences of cDNA Clones. Plant Physiology, 1991, 96, 1196-1202.	2.3	97
10	Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Molecular Biology, 1992, 19, 649-664.	2.0	80
11	The N-terminal Membrane Occupation and Recognition Nexus Domain of Arabidopsis Phosphatidylinositol Phosphate Kinase 1 Regulates Enzyme Activity. Journal of Biological Chemistry, 2007, 282, 5443-5452.	1.6	77
12	Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant Journal, 2014, 80, 642-653.	2.8	73
13	Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Molecular Biology, 1993, 22, 215-225.	2.0	72
14	Increasing Plasma Membrane Phosphatidylinositol(4,5)Bisphosphate Biosynthesis Increases Phosphoinositide Metabolism in Nicotiana tabacum. Plant Cell, 2007, 19, 1603-1616.	3.1	67
15	Changes in Phosphoinositide Metabolism with Days in Culture Affect Signal Transduction Pathways inGaldieria sulphuraria1. Plant Physiology, 1999, 119, 1331-1340.	2.3	56
16	A Role for Phosphoinositides in Regulating Plant Nuclear Functions. Frontiers in Plant Science, 2012, 3, 50.	1.7	56
17	Up-Regulation of Phosphoinositide Metabolism in Tobacco Cells Constitutively Expressing the Human Type I Inositol Polyphosphate 5-Phosphatase. Plant Physiology, 2002, 129, 1795-1806.	2.3	54
18	Several distinct genes encode nearly identical 16 kDa proteolipids of the vacuolar H+-ATPase from Arabidopsis thaliana. Plant Molecular Biology, 1995, 29, 227-244.	2.0	53

Imara Y Perera

#	Article	IF	CITATIONS
19	Plasma Membrane Phosphatidylinositol 4,5-Bisphosphate Levels Decrease with Time in Culture. Plant Physiology, 2001, 126, 1507-1518.	2.3	53
20	Biosynthesis and possible functions of inositol pyrophosphates in plants. Frontiers in Plant Science, 2015, 6, 67.	1.7	53
21	Characterization and comparative analysis ofArabidopsisphosphatidylinositol phosphate 5-kinase 10 reveals differences inArabidopsisand human phosphatidylinositol phosphate kinases. FEBS Letters, 2005, 579, 3427-3432.	1.3	52
22	Phosphoinositide-signaling is one component of a robust plant defense response. Frontiers in Plant Science, 2014, 5, 267.	1.7	51
23	Increasing inositol (1,4,5)â€trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphateâ€sensitive biomass increases in tomato. Plant Biotechnology Journal, 2010, 8, 170-183.	4.1	49
24	Phosphatidylinositol (4,5)Bisphosphate Inhibits K+-Efflux Channel Activity in NT1 Tobacco Cultured Cells Â. Plant Physiology, 2009, 149, 1127-1140.	2.3	31
25	Role of inositol 1,4,5â€ŧriphosphate signalling in gravitropic and phototropic gene expression. Plant, Cell and Environment, 2010, 33, 2041-2055.	2.8	31
26	Phosphoinositide Metabolism: Towards an Understanding of Subcellular Signaling. , 2006, 39, 181-205.		27
27	Synthesis and Accumulation of Calmodulin in Suspension Cultures of Carrot (Daucus carota L.). Plant Physiology, 1992, 100, 812-819.	2.3	22
28	NASA GeneLab RNA-seq consensus pipeline: Standardized processing of short-read RNA-seq data. IScience, 2021, 24, 102361.	1.9	20
29	Basal Signaling Regulates Plant Growth and Development. Plant Physiology, 2010, 154, 439-443.	2.3	17
30	A role for lipidâ€mediated signaling in plant gravitropism. American Journal of Botany, 2013, 100, 153-160.	0.8	13
31	A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in Arabidopsis. Metabolites, 2021, 11, 601.	1.3	13
32	Cyclodextrins enhance recombinant phosphatidylinositol phosphate kinase activity. Journal of Lipid Research, 2004, 45, 1783-1789.	2.0	12
33	InsP3 in Plant Cells. Plant Cell Monographs, 2010, , 145-160.	0.4	12
34	Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?. Planta, 2015, 241, 741-755.	1.6	11
35	Uncovering Transcriptional Responses to Fractional Gravity in Arabidopsis Roots. Life, 2021, 11, 1010.	1.1	10
36	Certain Malvaceae Plants Have a Unique Accumulation of myo-Inositol 1,2,4,5,6-Pentakisphosphate. Plants, 2015, 4, 267-283.	1.6	5

Imara Y Perera

#	Article	IF	CITATIONS
37	The Hull of Fame: Lipid Signaling in the Plasma Membrane. Plant Cell Monographs, 2011, , 437-455.	0.4	5
38	Phosphatidylinositol 4-Kinase and Phosphatidylinositol 4-Phosphate 5-Kinase Assays. Methods in Molecular Biology, 2013, 1009, 163-174.	0.4	3
39	The Circadian-clock Regulates the <i>Arabidopsis</i> Gravitropic Response. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2021, 9, 171-186.	0.3	3
40	Measurement of Inositol (1,4,5) Trisphosphate in Plant Tissues by a Competitive Receptor Binding Assay. Methods in Molecular Biology, 2013, 1009, 33-41.	0.4	2
41	The Phosphoinositide (PI) Pathway and Signaling in Plants. , 2001, , 83-92.		2
42	Methods for RNA Profiling of Gravi-Responding Plant Tissues. Methods in Molecular Biology, 2015, 1309, 91-117.	0.4	2
43	Sense and Sensibility: Inositol Phospholipids as Mediators of Abiotic Stress Responses. , 2000, , 285-296.		2
44	Quality Assessment of Affymetrix GeneChip Data using the EM Algorithm and a Naive Bayes Classifier. , 2007, , .		1
45	Evaluating the Effects of the Circadian Clock and Time of Day on Plant Gravitropic Responses. Methods in Molecular Biology, 2022, 2368, 301-319.	0.4	1
46	Plant PtdIns 3-Kinase Goes Nuclear. Plant Cell, 2000, 12, 1511-1512.	3.1	0
47	Plant PtdIns 3-Kinase Goes Nuclear. Plant Cell, 2000, 12, 1511.	3.1	0
48	Inositol Pyrophosphates and Phosphate Sensing in Plants. FASEB Journal, 2019, 33, 480.1.	0.2	0