
Olivier Gadal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 2006, 441, 770-773.	13.7	421
2	Nuclear Retention of Unspliced mRNAs in Yeast Is Mediated by Perinuclear Mlp1. Cell, 2004, 116, 63-73.	13.5	310
3	Identification of a 60S Preribosomal Particle that Is Closely Linked to Nuclear Export. Molecular Cell, 2001, 8, 517-529.	4.5	289
4	Nuclear Export of 60S Ribosomal Subunits Depends on Xpo1p and Requires a Nuclear Export Sequence-Containing Factor, Nmd3p, That Associates with the Large Subunit Protein Rpl10p. Molecular and Cellular Biology, 2001, 21, 3405-3415.	1.1	283
5	Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing. Human Molecular Genetics, 2013, 22, 2881-2893.	1.4	283
6	Maturation and Intranuclear Transport of Pre-Ribosomes Requires Noc Proteins. Cell, 2001, 105, 499-509.	13.5	206
7	High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Research, 2013, 23, 1829-1838.	2.4	195
8	High-resolution statistical mapping reveals gene territories in live yeast. Nature Methods, 2008, 5, 1031-1037.	9.0	173
9	The Nucle(ol)ar Tif6p and Efl1p Are Required for a Late Cytoplasmic Step of Ribosome Synthesis. Molecular Cell, 2001, 8, 1363-1373.	4.5	150
10	A protein-protein interaction map of yeast RNA polymerase III. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7815-7820.	3.3	137
11	A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. ELife, 2019, 8, .	2.8	124
12	A Noc Complex Specifically Involved in the Formation and Nuclear Export of Ribosomal 40 S Subunits. Journal of Biological Chemistry, 2003, 278, 4072-4081.	1.6	110
13	Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO Journal, 2002, 21, 5498-5507.	3.5	98
14	A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits. EMBO Journal, 2001, 20, 3695-3704.	3.5	81
15	Regulation of Cohesin-Mediated Chromosome Folding by Eco1 and Other Partners. Molecular Cell, 2020, 77, 1279-1293.e4.	4.5	80
16	Hmo1 Is Required for TOR-Dependent Regulation of Ribosomal Protein Gene Transcription. Molecular and Cellular Biology, 2007, 27, 8015-8026.	1.1	74
17	Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. Journal of Cell Biology, 2002, 157, 941-952.	2.3	73
18	A34.5, a Nonessential Component of Yeast RNA Polymerase I, Cooperates with Subunit A14 and DNA Topoisomerase I To Produce a Functional rRNA Synthesis Machineâ€. Molecular and Cellular Biology, 1997, 17, 1787-1795.	1.1	70

OLIVIER GADAL

#	Article	IF	CITATIONS
19	Two RNA Polymerase I Subunits Control the Binding and Release of Rrn3 during Transcription. Molecular and Cellular Biology, 2008, 28, 1596-1605.	1.1	69
20	RNA polymerase l–specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. Journal of Cell Biology, 2011, 192, 277-293.	2.3	68
21	Old Drug, New Target. Journal of Biological Chemistry, 2013, 288, 4567-4582.	1.6	62
22	Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Reports, 2019, 28, 408-422.e4.	2.9	58
23	Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes. Nucleic Acids Research, 2019, 47, 6195-6207.	6.5	53
24	Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. Journal of Cell Biology, 2013, 202, 201-210.	2.3	51
25	The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO Journal, 2012, 31, 3480-3493.	3.5	48
26	Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Research, 2013, 41, 10135-10149.	6.5	47
27	RNA Polymerase I-Specific Subunit CAST/hPAF49 Has aRole in the Activation of Transcription by UpstreamBinding Factor. Molecular and Cellular Biology, 2006, 26, 5436-5448.	1.1	38
28	Nuclear envelope expansion in budding yeast is independent of cell growth and does not determine nuclear volume. Molecular Biology of the Cell, 2019, 30, 131-145.	0.9	38
29	Cross Talk between tRNA and rRNA Synthesis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 189-195.	1.1	36
30	The Hog1 Stress-activated Protein Kinase Targets Nucleoporins to Control mRNA Export upon Stress. Journal of Biological Chemistry, 2013, 288, 17384-17398.	1.6	35
31	Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics. Current Opinion in Cell Biology, 2015, 34, 54-60.	2.6	34
32	High resolution microscopy reveals the nuclear shape of budding yeast during cell cycle and in various biological states. Journal of Cell Science, 2016, 129, 4480-4495.	1.2	33
33	Smc3 acetylation, Pds5 and Scc2 control the translocase activity that establishes cohesin-dependent chromatin loops. Nature Structural and Molecular Biology, 2022, 29, 575-585.	3.6	31
34	Genome Organization and Function: A View from Yeast and Arabidopsis. Molecular Plant, 2010, 3, 678-690.	3.9	29
35	Functional conservation of RNA polymerase II in fission and budding yeasts. Journal of Molecular Biology, 2000, 295, 1119-1127.	2.0	28
36	Mutants in ABC10β, a Conserved Subunit Shared by All Three Yeast RNA Polymerases, Specifically Affect RNA Polymerase I Assembly. Journal of Biological Chemistry, 1999, 274, 8421-8427.	1.6	27

OLIVIER GADAL

#	Article	IF	CITATIONS
37	Regulation of Ribosomal RNA Production by RNA Polymerase I: Does Elongation Come First?. Genetics Research International, 2012, 2012, 1-13.	2.0	27
38	Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae. Journal of Structural Biology, 2008, 162, 248-259.	1.3	25
39	Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase Ill–transcribed genes in budding yeast. Molecular Biology of the Cell, 2016, 27, 3164-3177.	0.9	25
40	Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genetics, 2019, 15, e1008157.	1.5	25
41	Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle. Journal of Structural Biology, 2019, 208, 152-164.	1.3	16
42	Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway. Nucleic Acids Research, 2018, 46, 4699-4714.	6.5	15
43	Nuclear organization and chromatin dynamics in yeast: Biophysical models or biologically driven interactions?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 468-481.	0.9	12
44	Nuclear structure and intranuclear retention of premature RNAs. Journal of Structural Biology, 2002, 140, 140-146.	1.3	6
45	Role of Second-Largest RNA Polymerase I Subunit Zn-Binding Domain in Enzyme Assembly. Eukaryotic Cell, 2003, 2, 1046-1052.	3.4	6
46	The nucleolar protein Nop19p interacts preferentially with Utp25p and Dhr2p and is essential for the production of the 40S ribosomal subunit inSaccharomyces cerevisiae. RNA Biology, 2011, 8, 1158-1172.	1.5	5
47	Non-Coding, RNAPII-Dependent Transcription at the Promoters of rRNA Genes Regulates Their Chromatin State in S. cerevisiae. Non-coding RNA, 2021, 7, 41.	1.3	5
48	Nucleolar localization of the yeast RNA exosome subunit Rrp44 hints at early pre-rRNA processing as its main function. Journal of Biological Chemistry, 2020, 295, 11195-11213.	1.6	4
49	Correlative Light and Electron Microscopy of Nucleolar Transcription in Saccharomyces cerevisiae. Methods in Molecular Biology, 2016, 1455, 29-40.	0.4	3
50	Coupling Between Production of Ribosomal RNA and Maturation: Just at the Beginning. Frontiers in Molecular Biosciences, 2021, 8, 778778.	1.6	3
51	Capturing Chromosome Structural Properties From Their Spatial and Temporal Fluctuations. , 2017, , 239-263.		1
52	High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae. Methods in Molecular Biology, 2016, 1455, 41-57.	0.4	0