Jose Garcia Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117474/publications.pdf

Version: 2024-02-01

109264 128225 3,787 66 35 60 citations g-index h-index papers 67 67 67 3015 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Microtubule cytoskeleton and mycorrhizal roots. Plant Signaling and Behavior, 2022, 17, 2031504.	1.2	1
2	Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 2022, 23, 5960.	1.8	23
3	DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist, 2021, 229, 548-562.	3.5	22
4	A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation. Plant and Cell Physiology, 2021, 62, 306-320.	1.5	9
5	Climatic drivers of Verticillium dahliae occurrence in Mediterranean olive-growing areas of southern Spain. PLoS ONE, 2020, 15, e0232648.	1.1	4
6	Functional Analysis of Plant Genes Related to Arbuscular Mycorrhiza Symbiosis Using Agrobacterium rhizogenes-Mediated Root Transformation and Hairy Root Production. Rhizosphere Biology, 2020, , 191-215.	0.4	1
7	Histochemical Staining and Quantification of Arbuscular Mycorrhizal Fungal Colonization. Methods in Molecular Biology, 2020, 2146, 43-52.	0.4	3
8	Identification and expression analysis of the arbuscular mycorrhiza-inducible Rieske non-heme oxygenase Ptc52 gene from tomato. Journal of Plant Physiology, 2019, 237, 95-103.	1.6	4
9	Identification and Expression Analysis of GRAS Transcription Factor Genes Involved in the Control of Arbuscular Mycorrhizal Development in Tomato. Frontiers in Plant Science, 2019, 10, 268.	1.7	33
10	An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods, 2018, 14, 34.	1.9	34
11	Ethylene Alleviates the Suppressive Effect of Phosphate on Arbuscular Mycorrhiza Formation. Journal of Plant Growth Regulation, 2016, 35, 611-617.	2.8	14
12	Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization. Journal of Plant Physiology, 2016, 190, 15-25.	1.6	6
13	Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 2015, 205, 1431-1436.	3.5	331
14	Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiologia Plantarum, 2015, 154, 66-81.	2.6	41
15	The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material. Journal of Agricultural Science, 2014, 152, 370-378.	0.6	56
16	Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signaling and Behavior, 2012, 7, 1584-1588.	1.2	25
17	Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. Journal of Experimental Botany, 2012, 63, 3545-3558.	2.4	52
18	A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza, 2012, 22, 189-194.	1.3	56

#	Article	IF	CITATIONS
19	Strigolactones: a cry for help in the rhizosphere. Botany, 2011, 89, 513-522.	0.5	78
20	Ethyleneâ€dependent/ethyleneâ€independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytologist, 2011, 190, 193-205.	3.5	127
21	The bioprotective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biology and Biochemistry, 2011, 43, 831-834.	4.2	23
22	Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi. Botany, 2011, 89, 285-288.	0.5	12
23	Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants. Plant Signaling and Behavior, 2011, 6, 755-758.	1.2	30
24	First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago) Tj ETQq0 0 0 rg	BT /Overlo 4.2	ck 10 Tf 50 5
25	Activation of basal defense mechanisms of rice plants by <i>Glomus intraradices</i> does not affect the arbuscular mycorrhizal symbiosis. New Phytologist, 2010, 188, 597-614.	3.5	55
26	Parasitic plant infection is partially controlled through symbiotic pathways. Weed Research, 2010, 50, 76-82.	0.8	21
27	Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces <i>Orobanche</i> and <i>Phelipanche</i> species seed germination. Weed Research, 2010, 50, 262-268.	0.8	57
28	The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare). Physiologia Plantarum, 2010, 140, no-no.	2.6	10
29	Variations in the Mycorrhization Characteristics in Roots of Wild-Type and ABA-Deficient Tomato Are Accompanied by Specific Transcriptomic Alterations. Molecular Plant-Microbe Interactions, 2010, 23, 651-664.	1.4	62
30	Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents. Journal of Plant Physiology, 2010, 167, 606-613.	1.6	57
31	Large-scale epidemiological study and spatial patterns of Verticillium wilt in olive orchards in southern Spain. Crop Protection, 2009, 28, 46-52.	1.0	11
32	Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza, 2009, 19, 449-459.	1.3	70
33	Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regulation, 2009, 58, 307-316.	1.8	55
34	Agricultural factors affecting Verticillium wilt in olive orchards in Spain. European Journal of Plant Pathology, 2008, 122, 287-295.	0.8	30
35	The Jasmonic Acid Signalling Pathway Restricts the Development of the Arbuscular Mycorrhizal Association in Tomato. Journal of Plant Growth Regulation, 2008, 27, 221-230.	2.8	68
36	The Biocontrol Effect of Mycorrhization on Soilborne Fungal Pathogens and the Autoregulation of the AM Symbiosis: One Mechanism, Two Effects?., 2008, , 307-320.		51

#	Article	IF	Citations
37	Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytologist, 2007, 175, 554-564.	3.5	273
38	Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry, 2007, 39, 727-734.	4.2	148
39	Endocellulase activity is associated with arbuscular mycorrhizal spread in pea symbiotic mutants but not with its ethylene content in root. Soil Biology and Biochemistry, 2007, 39, 786-792.	4.2	13
40	Saprobic fungi decrease plant toxicity caused by olive mill residues. Applied Soil Ecology, 2004, 26, 149-156.	2.1	38
41	Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 2003, 164, 993-998.	1.7	149
42	Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2002, 53, 1377-1386.	2.4	239
43	Arbuscular mycorrhizal colonization and growth of soybean (Glycine max) and lettuce (Lactuc) Tj ETQq1 1 0.784	314 rgBT 4.2	/Overlock 10
44	Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. Journal of Plant Physiology, 2002, 159, 517-523.	1.6	74
45	Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Molecular Biology, 2002, 49, 679-695.	2.0	51
46	Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2002, 53, 1377-86.	2.4	76
47	Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycological Research, 2000, 104, 722-725.	2.5	91
48	Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. Journal of Experimental Botany, 2000, 51, 1443-1448.	2.4	44
49	Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biology and Biochemistry, 2000, 32, 589-595.	4.2	96
50	Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammoniaâ€lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. Journal of Experimental Botany, 2000, 51, 1969-1977.	2.4	142
51	Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. Journal of Experimental Botany, 1999, 50, 1663-1668.	2.4	112
52	Effect of xyloglucan and xyloglucanase activity on the development of the arbuscular mycorrhizal Glomus mosseae. Mycological Research, 1999, 103, 882-886.	2.5	13
53	Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. Journal of Experimental Botany, 1999, 50, 1663-1668.	2.4	24
54	Title is missing!. Plant and Soil, 1998, 200, 131-137.	1.8	47

#	Article	IF	CITATIONS
55	Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. FEBS Letters, 1998, 428, 193-199.	1.3	43
56	Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene, 1997, 195, 177-186.	1.0	66
57	Interaction between Alternaria alternata or Fusarium equiseti and Glomus mosseae and its effects on plant growth. Biology and Fertility of Soils, 1997, 24, 301-305.	2.3	28
58	Purification of an arbuscular mycorrhizal endoglucanase from onion roots colonized by Glomus mosseae. Soil Biology and Biochemistry, 1996, 28, 1443-1449.	4.2	18
59	Presence of specific polypeptides in onion roots colonized by Glomus mosseae. Mycorrhiza, 1993, 2, 175-177.	1.3	39
60	Endoglucanase activity in lettuce plants colonized with the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum. Soil Biology and Biochemistry, 1992, 24, 955-959.	4.2	11
61	Cellulase activity in lettuce and onion plants colonized by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Soil Biology and Biochemistry, 1992, 24, 503-504.	4.2	6
62	Cellulase production by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. &) Tj ETQq0 0 0 rgB	T /9.yerloc	k 10 Tf 50 46
63	Production of pectolytic enzymes in lettuce root colonized by Glomus mosseae. Soil Biology and Biochemistry, 1991, 23, 597-601.	4.2	18
64	Possible influence of hydrolytic enzymes on vesicular arbuscular mycorrhizal infection of alfalfa. Soil Biology and Biochemistry, 1990, 22, 149-152.	4.2	35
65	Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biology and Biochemistry, 1989, 21, 165-167.	4.2	48
66	Interaction between Glomus mosseae and Erwinia carotovora and its effects on the growth of tomato plants. New Phytologist, 1988, 110, 551-555.	3.5	34