Diane S Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117372/publications.pdf

Version: 2024-02-01

		47006	22166
156	13,168	47	113
papers	citations	h-index	g-index
158	158	158	12734
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell. Cell, 2001, 105, 369-377.	28.9	2,571
2	Liver from bone marrow in humans. Hepatology, 2000, 32, 11-16.	7.3	1,185
3	Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 2000, 31, 235-240.	7.3	945
4	Stromal Cell–Derived Factor-1α Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial Infarction but Is Not Sufficient to Induce Homing in the Absence of Injury. Circulation, 2004, 110, 3300-3305.	1.6	756
5	Plasticity of marrow-derived stem cells. Blood, 2003, 102, 3483-3493.	1.4	705
6	Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. Journal of Clinical Investigation, $2003, 112, 42-49$.	8.2	471
7	Lack of a Fusion Requirement for Development of Bone Marrow-Derived Epithelia. Science, 2004, 305, 90-93.	12.6	381
8	Plasticity of Bone Marrow–Derived Stem Cells. Stem Cells, 2004, 22, 487-500.	3.2	357
9	Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nature Reviews Cardiology, 2021, 18, 194-209.	13.7	304
10	Radiation pneumonitis in mice. Experimental Hematology, 2002, 30, 1333-1338.	0.4	193
11	Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Experimental Hematology, 2003, 31, 413-420.	0.4	187
12	Macrophages Directly Contribute to the Exaggerated Inflammatory Response in Cystic Fibrosis Transmembrane Conductance Regulator ^{â°'/â°'} Mice. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 295-304.	2.9	187
13	Bone Marrow-Derived Cells Contribute to Epithelial Engraftment during Wound Healing. American Journal of Pathology, 2004, 165, 1767-1772.	3.8	168
14	Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell, 2014, 156, 649-662.	28.9	168
15	Pediatric non–Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nature Genetics, 2017, 49, 451-456.	21.4	152
16	In vivo correction of anaemia in \hat{l}^2 -thalassemic mice by \hat{l}^3 PNA-mediated gene editing with nanoparticle delivery. Nature Communications, 2016, 7, 13304.	12.8	143
17	Marrow-Derived Cells as Vehicles for Delivery of Gene Therapy to Pulmonary Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 645-651.	2.9	138
18	Tissueâ€engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB Journal, 2011, 25, 2731-2739.	0.5	136

#	Article	lF	CITATIONS
19	Abnormal Trafficking and Degradation of TLR4 Underlie the Elevated Inflammatory Response in Cystic Fibrosis. Journal of Immunology, 2011, 186, 6990-6998.	0.8	118
20	Limitations of Green Fluorescent Protein as a Cell Lineage Marker. Stem Cells, 2007, 25, 2593-2600.	3.2	117
21	The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation. Immunity, 2016, 44, 246-258.	14.3	107
22	Promoters to Study Vascular Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 603-612.	2.4	107
23	Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis, 2011, 32, 964-972.	2.8	106
24	Engineering Human Peripheral Blood Stem Cell Grafts that Are Depleted of Na \tilde{A}^- ve T Cells and Retain Functional Pathogen-Specific Memory T Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 705-716.	2.0	93
25	Bone marrow plasticity revisited: protection or differentiation in the kidney tubule?. Journal of Clinical Investigation, 2005, 115, 1705-1708.	8.2	93
26	Threshold of Lung Injury Required for the Appearance of Marrow-Derived Lung Epithelia. Stem Cells, 2006, 24, 1986-1992.	3.2	92
27	Regulation of hematopoietic stem cell fate. Oncogene, 2002, 21, 3262-3269.	5.9	87
28	Rbm15 Modulates Notch-Induced Transcriptional Activation and Affects Myeloid Differentiation. Molecular and Cellular Biology, 2007, 27, 3056-3064.	2.3	85
29	Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nature Communications, 2015, 6, 6221.	12.8	84
30	Bone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry. Stem Cells, 2007, 25, 1881-1887.	3.2	83
31	Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13514-13519.	7.1	83
32	ProxTom Lymphatic Vessel Reporter Mice Reveal Prox1 Expression in the Adrenal Medulla, Megakaryocytes, and Platelets. American Journal of Pathology, 2012, 180, 1715-1725.	3.8	81
33	Functional activity of murine CD34+and CD34â^' hematopoietic stem cell populations. Experimental Hematology, 1999, 27, 788-796.	0.4	77
34	Comment on "Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells". Science, 2003, 299, 1317a-1317.	12.6	77
35	Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2965-2970.	7.1	77
36	Influence of Culture Medium on Smooth Muscle Cell Differentiation from Human Bone Marrow–Derived Mesenchymal Stem Cells. Tissue Engineering - Part A, 2009, 15, 319-330.	3.1	77

#	Article	IF	CITATIONS
37	Role of RhoA-Specific Guanine Exchange Factors in Regulation of Endomitosis in Megakaryocytes. Developmental Cell, 2012, 22, 573-584.	7.0	77
38	Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood, 2006, 107, 4182-4188.	1.4	75
39	SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. Journal of Experimental Medicine, 2010, 207, 1183-1195.	8.5	68
40	Role for MKL1 in megakaryocytic maturation. Blood, 2009, 113, 2826-2834.	1.4	67
41	Reducing Mitochondrial ROS Improves Disease-related Pathology in a Mouse Model of Ataxia-telangiectasia. Molecular Therapy, 2013, 21, 42-48.	8.2	66
42	Very Small Embryonic-Like Stem Cells from the Murine Bone Marrow Differentiate into Epithelial Cells of the Lung. Stem Cells, 2013, 31, 2759-2766.	3.2	65
43	The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals a Role for the Cell Cycle in Fate Specification. Cell Reports, 2018, 25, 2083-2093.e4.	6.4	64
44	Engraftment of Donor-Derived Epithelial Cells in Multiple Organs Following Bone Marrow Transplantation into Newborn Mice. Stem Cells, 2006, 24, 2299-2308.	3.2	63
45	Bone Marrow-derived Cells and Stem Cells in Lung Repair. Proceedings of the American Thoracic Society, 2008, 5, 323-327.	3.5	62
46	Fanconi Anemia Complementation Group FANCD2 Protein Serine 331 Phosphorylation Is Important for Fanconi Anemia Pathway Function and BRCA2 Interaction. Cancer Research, 2009, 69, 8775-8783.	0.9	56
47	MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation. Blood, 2012, 120, 2317-2329.	1.4	55
48	Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood, 2016, 128, 923-933.	1.4	53
49	Forskolin effects on the voltage-gated K+ conductance of human T cells. Pflugers Archiv European Journal of Physiology, 1988, 412, 133-140.	2.8	52
50	Increased Tubular Proliferation as an Adaptive Response to Glomerular Albuminuria. Journal of the American Society of Nephrology: JASN, 2012, 23, 429-437.	6.1	52
51	Reduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Immunology, 2013, 190, 5196-5206.	0.8	52
52	Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood, 2019, 134, 1547-1557.	1.4	49
53	Engraftment of Bone Marrow-Derived Epithelial Cells. Annals of the New York Academy of Sciences, 2005, 1044, 117-124.	3.8	47
54	Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biology, 2019, 17, e3000421.	5.6	47

#	Article	IF	CITATIONS
55	Lungâ€specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. FASEB Journal, 2007, 21, 2592-2601.	0.5	45
56	Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate. Molecular Therapy, 2012, 20, 109-118.	8.2	44
57	Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies. Stem Cells, 2018, 36, 1138-1145.	3.2	43
58	Lineage specificity of gene expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6508-6513.	7.1	42
59	Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L882-L892.	2.9	40
60	Bone marrow to liver: the blood of Prometheus. Seminars in Cell and Developmental Biology, 2002, 13, 411-417.	5.0	39
61	Complex oncogene dependence in microRNA-125a-induced myeloproliferative neoplasms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16636-16641.	7.1	39
62	Very small embryonicâ€like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues. Molecular Reproduction and Development, 2013, 80, 677-690.	2.0	39
63	Integration of engrafted Schwann cells into injured peripheral nerve: Axonal association and nodal formation on regenerated axons. Neuroscience Letters, 2005, 387, 85-89.	2.1	38
64	Detection of bone marrow–derived lung epithelial cells. Experimental Hematology, 2010, 38, 564-573.	0.4	38
65	Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages. Scientific Reports, 2017, 7, 10882.	3.3	37
66	Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation. Blood, 2013, 121, 1094-1101.	1.4	36
67	Xenotransplantation of immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production. Blood, 2001, 97, 1635-1643.	1.4	35
68	Acute Aspirin Overdose. Therapeutic Drug Monitoring, 1992, 14, 441-451.	2.0	33
69	Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood, 2010, 116, 1942-1950.	1.4	33
70	Nonhematopoietic Cells are the Primary Source of Bone Marrow-Derived Lung Epithelial Cells. Stem Cells, 2012, 30, 491-499.	3.2	33
71	Physiological variations of stem cell factor and stromalâ€derived factorâ€1 in murine models of liver injury and regeneration. Liver International, 2008, 28, 308-318.	3.9	31
72	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695.	12.8	31

#	Article	IF	CITATIONS
73	Dynamic Migration and Cell-Cell Interactions of Early Reprogramming Revealed by High-Resolution Time-Lapse Imaging. Stem Cells, 2013, 31, 895-905.	3.2	28
74	Molecular Pathways: Induction of Polyploidy as a Novel Differentiation Therapy for Leukemia. Clinical Cancer Research, 2013, 19, 6084-6088.	7.0	26
75	Development of a murine hematopoietic progenitor complementary DNA microarray using a subtracted complementary DNA library. Blood, 2002, 100, 833-844.	1.4	25
76	Increased susceptibility of <i>Cftr</i> ^{â^'/â^'} mice to LPS-induced lung remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L711-L719.	2.9	25
77	Hematopoietic Stem Cells Can Be CD34+ or CD34 Leukemia and Lymphoma, 2001, 40, 221-234.	1.3	24
78	Bone Marrow Transplantation Can Attenuate the Progression of Mesangial Sclerosis. Stem Cells, 2006, 24, 406-415.	3.2	22
79	Bone Marrow-derived Lung Epithelial Cells. Proceedings of the American Thoracic Society, 2008, 5, 699-702.	3.5	22
80	Adenosine inhibits chemotaxis and induces hepatocyte-specific genes in bone marrow mesenchymal stem cells. Hepatology, 2010, 51, NA-NA.	7.3	22
81	Engraftment of Marrow-derived Epithelial Cells: The Role of Fusion. Proceedings of the American Thoracic Society, 2006, 3, 691-695.	3.5	20
82	Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells. Science, 2021, 371, 1019-1025.	12.6	20
83	SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume. PLoS ONE, 2017, 12, e0178095.	2.5	20
84	Suggestions for a New Paradigm of Cell Differentiative Potential>. Blood Cells, Molecules, and Diseases, 2001, 27, 625-631.	1.4	19
85	Engraftment of Bone Marrow-Derived Epithelial Cells. Stem Cell Reviews and Reports, 2005, 1, 021-028.	5.6	19
86	Hematopoietic defects in response to reduced Arhgap21. Stem Cell Research, 2018, 26, 17-27.	0.7	18
87	Circulating stem cells in extremely preterm neonates. Acta Paediatrica, International Journal of Paediatrics, 2007, 96, 521-525.	1.5	17
88	Chimeric mice reveal clonal development of pancreatic acini, but not islets. Biochemical and Biophysical Research Communications, 2009, 379, 526-531.	2.1	17
89	Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Reports, 2021, 36, 109421.	6.4	17
90	MRTFA augments megakaryocyte maturation by enhancing the SRF regulatory axis. Blood Advances, 2018, 2, 2691-2703.	5.2	16

#	Article	IF	Citations
91	The commonly used \hat{l}^2 -actin-GFP transgenic mouse strain develops a distinct type of glomerulosclerosis. Transgenic Research, 2007, 16, 829-834.	2.4	15
92	Hepatocyte Nuclear Factor-1 as Marker of Epithelial Phenotype Reveals Marrow-Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice. Stem Cells, 2008, 26, 1768-1777.	3.2	15
93	Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor Î ² -Common Subunit. IScience, 2019, 17, 167-181.	4.1	15
94	Rbm15 Affects Notch Signaling and Myelopoiesis Blood, 2006, 108, 2545-2545.	1.4	14
95	Isolation and flow cytometric analysis of T-cell-depleted CD34+ PBPCs. Transfusion, 2000, 40, 1475-1481.	1.6	12
96	Regeneration and Repair. Annals of the New York Academy of Sciences, 2009, 1172, 88-94.	3.8	12
97	MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. Journal of Biological Chemistry, 2021, 296, 100543.	3.4	12
98	A preclinical xenotransplantation animal model to assess human hematopoietic stem cell engraftment. Transfusion, 2004, 44, 555-566.	1.6	11
99	Differentiation of PTH-Expressing Cells From Human Pluripotent Stem Cells. Endocrinology, 2020, 161, .	2.8	11
100	Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury. Cells, 2021, 10, 1570.	4.1	11
101	Rectal Potential Difference and the Functional Expression of CFTR in the Gastrointestinal Epithelia in Cystic Fibrosis Mouse Models. Pediatric Research, 2008, 63, 73-78.	2.3	10
102	Epithelial (E)-Cadherin is a Novel Mediator of Platelet Aggregation and Clot Stability. Thrombosis and Haemostasis, 2019, 119, 744-757.	3.4	9
103	Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants. Current Opinion in Hematology, 2021, 28, 28-35.	2.5	9
104	A versatile flow-based assay for immunocyte-mediated cytotoxicity. Journal of Immunological Methods, 2019, 474, 112668.	1.4	8
105	Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation. Thrombosis and Haemostasis, 2016, 116, 506-516.	3.4	7
106	Differentiation Dependent Dynamics of Histone Modifications during Myelopoiesis Blood, 2005, 106, 2716-2716.	1.4	7
107	Regulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site. Experimental Hematology, 2000, 28, 974-984.	0.4	6
108	Effect of a Matrigel Sandwich on Endodermal Differentiation of Human Embryonic Stem Cells. Stem Cell Reviews and Reports, 2013, 9, 578-585.	5.6	6

#	Article	IF	Citations
109	Single cell epigenetic visualization assay. Nucleic Acids Research, 2021, 49, e43-e43.	14.5	6
110	Enhanced growth and hepatic differentiation of fetal liver epithelial cells through combinational and temporal adjustment of soluble factors. Biotechnology Journal, 2012, 7, 440-448.	3. 5	5
111	Low Iron Promotes Megakaryocytic Commitment of Megakaryocytic-Erythroid Progenitors in Human and Mice. Blood, 2018, 132, 2-2.	1.4	5
112	Gotta find GATA a friend. Nature Medicine, 1997, 3, 960-961.	30.7	4
113	Discovery that polyploid cells can undergo mitosis. Cell Cycle, 2010, 9, 2491-2501.	2.6	4
114	Biâ€allelic deletions within 13q14 and transient trisomy 21 with absence of GATA1s in pediatric acute megakaryoblastic leukemia. Pediatric Blood and Cancer, 2011, 57, 516-519.	1.5	4
115	Serum Response Factor Is An Essential Transcription Factor in Megakaryocytic Maturation Blood, 2009, 114, 3652-3652.	1.4	4
116	Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Experimental and Molecular Medicine, 2022, 54, 639-652.	7.7	4
117	IFN- \hat{l}^3 binds TPO to inhibit hematopoiesis. Blood, 2019, 133, 2004-2005.	1.4	2
118	MKL1 Promotes Megakaryocytic Differentiation Via Stimulation of Serum Response Factor Target Genes Blood, 2007, 110, 871-871.	1.4	2
119	Multipotent human cells expand indefinitely. Blood, 2001, 98, 2595-2595.	1.4	1
120	Plasticity of bone marrow-derived stem cells. Cytotherapy, 2003, 5, 116.	0.7	1
121	An oxidase road to platelet adhesion. Blood, 2016, 127, 1386-1386.	1.4	1
122	Regulation of hematopoietic stem cell fate. , 0, .		1
123	ARHGEF12 Is Essential for Human Megakaryocyte Differentiation and Plays Critical Roles in Platelet Function. Blood, 2014, 124, 341-341.	1.4	1
124	Epithelial (E)-Cadherin Is a Novel Regulator of Platelet Function. Blood, 2014, 124, 95-95.	1.4	1
125	Tmod3 participates in platelet formation and sizing in mouse fetal liver (278.9). FASEB Journal, 2014, 28, 278.9.	0.5	1
126	Single Cell Transcriptome Profiling of Highly Purified Human Megakaryocyte-Erythroid Progenitors (MEP) Reveals New Insights into the MEP Fate Decision. Blood, 2014, 124, 2903-2903.	1.4	1

#	Article	IF	Citations
127	Single-Cell Tracking By Time Lapse Imaging Confirms Thrombopoietin Promotes Megakaryocytic-Erythroid Progenitor Self Renewal, but Does Not Instruct Lineage Commitment. Blood, 2021, 138, 3270-3270.	1.4	1
128	Xenogeneic studies of human stem cell plasticity. Blood, 2003, 101, 3762-3764.	1.4	0
129	The importance of National Blood Foundation funding. Transfusion, 2005, 45, 67S-71S.	1.6	O
130	1054. Hematopoietic and Non-Hematopoietic Engraftment after Bone Marrow Transplantation in Newborn Mice. Molecular Therapy, 2006, 13, S404.	8.2	0
131	Gene Therapy in Transfusion Medicine. , 0, , 936-949.		0
132	Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving highâ€dose granulocyte colonyâ€stimulating factor. Journal of Clinical Apheresis, 2012, 27, 235-241.	1.3	0
133	Stem cell maintenance: aMPLe splicing choices. Blood, 2015, 125, 891-892.	1.4	0
134	Gene therapy applications to transfusion medicine. , 2016, , 452-455.		0
135	The Dynamics of Chromatin Modification during RA Induced Promyelocyte Differentiation Blood, 2004, 104, 4191-4191.	1.4	0
136	Successful Engraftment of Autologous Peripheral Blood Progenitor Cells Derived from Multiple Collections in Poor Mobilizers by Hyperstimulation with G-CSF Blood, 2005, 106, 5508-5508.	1.4	0
137	MKL1 Enhances Megakaryocytic Differentiation of Primary CD34+ Cells Blood, 2007, 110, 2218-2218.	1.4	0
138	OTT-MKL1 and MKL1 Inhibit Wnt Signaling Blood, 2008, 112, 2250-2250.	1.4	0
139	SENP1â€mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. FASEB Journal, 2010, 24, .	0.5	0
140	Modeling Megakaryopoiesis and Leukemogenesis Using Human and Murine Embryonic Stem Cells. Blood, 2010, 116, 2502-2502.	1.4	0
141	Intermediate Steps In Erythroid, Megakaryocytic and Myeloid Lineage Specification. Blood, 2010, 116, 4778-4778.	1.4	0
142	Bone Marrow Derived Lung Epithelial Cells Are Derived Predominantly From Nonhematopoietic Cells Blood, 2010, 116, 2615-2615.	1.4	0
143	MKL2 Functions in the Absence of MKL1 to Promote Megakaryocyte Maturation. Blood, 2011, 118, 2336-2336.	1.4	0
144	Induction of Megakaryocyte Differentiation Drives Nuclear Accumulation and Transcriptional Function of MKL1 Via Actin Polymerization and RhoA Activation. Blood, 2012, 120, 3440-3440.	1.4	0

#	ARTICLE	IF	CITATIONS
145	Optimization of a Clonal Assay for Bipotent Megakaryocyte-Erythroid Progenitors (MEP), and Their Enrichment From Mobilized Peripheral Blood Blood, 2012, 120, 2310-2310.	1.4	O
146	Codanin-1 Binds to Key Erythroid Genes and Its Knockdown Coupled with Ectopic Mutant Expression Recapitulates the Congenital Dyserythropoietic Anemia Type I (CDA I) Phenotype. Blood, 2014, 124, 360-360.	1.4	0
147	A Human Bone Marrow-Derived Stromal Cell Population with Hemogenic Potential. Blood, 2015, 126, 1201-1201.	1.4	0
148	Megakaryocytic Fate Specification and Maturation. Blood, 2015, 126, SCI-2-SCI-2.	1.4	0
149	Next Generation Sequencing Identifies a Novel Subset of Non-Down Syndrome Acute Megakaryoblastic Leukemia Characterized By Chimeric Transcripts Involving HOX Cluster Genes. Blood, 2015, 126, 171-171.	1.4	O
150	Role of RNA Binding Protein RBM15 in m 6 A RNA Methylation During Megakaryocytic Differentiation. FASEB Journal, 2018, 32, 790.9.	0.5	0
151	MRTFA Augments Megakaryocyte Maturation By Enhancing the SRF Regulatory Axis. Blood, 2018, 132, 640-640.	1.4	O
152	Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals Role of Cell Cycle in Fate Specification. Blood, 2018, 132, 3828-3828.	1.4	0
153	Developing Single Cell Live Imaging Strategies to Determine MEP Fate and Predict Potential. Blood, 2019, 134, 1190-1190.	1.4	O
154	Understanding the mysteries of iPS cells. Yale Journal of Biology and Medicine, 2009, 82, 105-7.	0.2	0
155	Cell Cycle Regulates Phosphorylation of RUNX1 to Modulate Megakaryocyte-Erythroid Progenitor Fate Specification. Blood, 2020, 136, 15-15.	1.4	0
156	Reconstruction of Sickle Cell Disease with Circulating Sickling Red Blood Cells in Novel Humanized Cytokines and Liver Mistrg Mice. Blood, 2020, 136, 29-30.	1.4	0