
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Decay Parameter Focused on the Arrangement of Cells in Radial Files of Dried Japanese Cedar after Decay from Brown-rot Fungi <i>Fomitopsis palustris</i> . Mokuzai Gakkai Shi, 2022, 68, 17-25.	0.2	0
2	Experimental Evidence of Slow Mode Water in the Vicinity of Poly(ethylene oxide) at Physiological Temperature. Journal of Physical Chemistry B, 2022, 126, 1758-1767.	2.6	11
3	Interfacial Selective Study on the Gelation Behavior of Aqueous Methylcellulose Solution via a Quartz Crystal Microbalance. Langmuir, 2022, , .	3.5	0
4	Humidity-Induced Self-Assembled Nanostructures via Ion Aggregation in Ionic Linear Polysiloxanes. Macromolecules, 2022, 55, 4313-4319.	4.8	6
5	Parameter Analysis of Physical Properties Influencing Drilling Resistance of Decayed Wood. MOKUZAI HOZON (Wood Protection), 2021, 47, 22-31.	0.0	0
6	Adsorbed Polymer Effects on Particle Dispersion in Polymeric Matrix Examined by SANS. , 2021, , .		0
7	Evaluation of Local Gelation Behavior of Aqueous Methylcellulose Solution Using Quartz Crystal Microbalance. Materials Transactions, 2021, 62, 647-654.	1.2	1
8	Evaluation of Local Gelation Behavior of Aqueous Methylcellulose Solution Using Quartz Crystal Microbalance. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 23-29.	0.4	0
9	Local Dynamics of the Hydration Water and Poly(Methyl Methacrylate) Chains in PMMA Networks. Frontiers in Chemistry, 2021, 9, 728738.	3.6	5
10	Toughening Effect of Rodlike Cellulose Nanocrystals in Epoxy Adhesive. ACS Applied Polymer Materials, 2020, 2, 1234-1243.	4.4	38
11	Generation Mechanism and Quantitative Evaluation of Fuzzy Grain on Planed Surfaces of Hinoki (<i>Chamaecyparis obtusa</i>). Mokuzai Gakkai Shi, 2019, 65, 63-70.	0.2	0
12	Dispersion state of carbon black in polystyrene produced with different dispersion media and its effects on composite rheological properties. Polymer Journal, 2019, 51, 275-281.	2.7	7
13	Evaluation of particulate materials as a physical barrier against penetration of <i>Reticulitermes speratus</i> under floor of experiment house. MOKUZAI HOZON (Wood Protection), 2019, 45, 114-121.	0.0	1
14	Small-angle X-ray Scattering Analysis on Filler Dispersion State in Polymer Composite Prepared by Solvent Casting. Nippon Gomu Kyokaishi, 2019, 92, 158-163.	0.0	0
15	Rational design of a biomimetic glue with tunable strength and ductility. Polymer Chemistry, 2017, 8, 1654-1663.	3.9	22
16	Structure and Mechanical Properties of Polybutadiene Thin Films Bound to Surface-Modified Carbon Interface. Langmuir, 2017, 33, 8883-8890.	3.5	4
17	Mechanically Induced Opening–Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. ChemPhysChem, 2017, 18, 1470-1474.	2.1	46
18	ldentification of the substance responsible for whitening of the surface of wood posts set on foundation stones of traditional wooden buildings. MOKUZAI HOZON (Wood Protection), 2017, 43, 139-147.	0.0	1

#	Article	IF	CITATIONS
19	Hydrophobized plant polyphenols: self-assembly and promising antibacterial, adhesive, and anticorrosion coatings. Chemical Communications, 2016, 52, 312-315.	4.1	49
20	<i>In-Situ</i> Nano Structural Analysis on Soft Interfaces and Thin Films by Neutron Reflectometry. Oleoscience, 2016, 16, 535-540.	0.0	0
21	Nanoprecipitation for ultrafiltration membranes. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 615-620.	2.1	4
22	Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Advances, 2015, 5, 15977-15984.	3.6	31
23	Confinement Effect on the Effective Viscosity of Plasticized Polymer Films. Macromolecules, 2015, 48, 7719-7726.	4.8	24
24	Pattern Recognition of Blue Stain Discoloration Appearing on Radiata Pine Boards. Mokuzai Gakkai Shi, 2015, 61, 274-279.	0.2	1
25	Nondestructive Visualization Using Electromagnetic Waves for Real and Practical Sensing Technology for Robotics. Advances in Computer Vision and Pattern Recognition, 2015, , 413-482.	1.3	Ο
26	Contribution of copper based metal fitting to control the biodegradation of woodï¼^â) ï¼XRF-analysis of copper contents at the surface of wood members with copper metal fitting in Kyoto Sanjo-ohashi5 MOKUZAI HOZON (Wood Protection), 2015, 41, 256-263.	0.0	0
27	Effect of pore conformation on dielectric anisotropy of oven-dry wood evaluated using terahertz time-domain spectroscopy and eigenvalue problems for two-dimensional photonic crystals. Journal of Wood Science, 2014, 60, 194-200.	1.9	10
28	Applicability of effective medium theory to wood density measurements using terahertz time-domain spectroscopy. Journal of Wood Science, 2014, 60, 111-116.	1.9	13
29	Hydrophilic polymer nanofibre networks for rapid removal of aromatic compounds from water. Chemical Communications, 2014, 50, 9393-9396.	4.1	15
30	Ultrathin free-standing membranes from metal hydroxide nanostrands. Journal of Membrane Science, 2013, 448, 270-291.	8.2	31
31	Effect of annual rings on transmission of 100ÂGHz millimeter waves through wood. Journal of Wood Science, 2013, 59, 375-382.	1.9	4
32	A simple approach for surface hardening of polystyrene. Applied Surface Science, 2013, 264, 589-592.	6.1	5
33	Dielectric anisotropy of oven- and air-dried wood evaluated using a free space millimeter wave. Journal of Wood Science, 2013, 59, 367-374.	1.9	8
34	Flash freezing route to mesoporous polymer nanofibre networks. Nature Communications, 2013, 4, 2653.	12.8	75
35	Development of Radar Apparatus for Scanning of Wooden-Wall to Evaluate Inner Structure and Bio-Degradation Non-Destructively. Advanced Materials Research, 2013, 778, 289-294.	0.3	3

36 Interfacial dynamics of poly(methyl methacrylate) in water. , 2013, , .

#	Article	IF	CITATIONS
37	Relaxation of polystyrene at interface with solid substrate. , 2013, , .		1
38	Molecular Aggregation States of Poly (meth) acrylate Thin Films in Non-solvents. Hamon, 2013, 23, 62-65.	0.0	0
39	Effect of Long Range Interactions on the Glass Transition Temperature of Thin Polystyrene Films. ACS Macro Letters, 2012, 1, 1317-1320.	4.8	54
40	Dynamics of Water-Induced Surface Reorganization in Poly(methyl methacrylate) Films. Macromolecules, 2012, 45, 4638-4642.	4.8	76
41	One-pot surface modification of rubbery polymer films. Polymer Chemistry, 2012, 3, 319-321.	3.9	9
42	Local Conformation and Relaxation of Polystyrene at Substrate Interface. Macromolecules, 2012, 45, 4643-4649.	4.8	95
43	Mobility Gradient of Polystyrene in Films Supported on Solid Substrates. Advances in Polymer Science, 2012, , 1-27.	0.8	0
44	Thermal Molecular Motion of Poly(methyl methacrylate) at Various Interfaces. Nihon Reoroji Gakkaishi, 2012, 40, 143-149.	1.0	0
45	Density Distributions of Poly(methyl methacrylate)Thin Films in Non-Solvents. Kobunshi Ronbunshu, 2011, 68, 608-615.	0.2	3
46	Effect of grain direction on transmittance of 100-GHz millimeter wave for hinoki (Chamaecyparis) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
47	Surface Reorganization of Thin Poly(methyl methacrylate) Films Induced by Water. Chemistry Letters, 2010, 39, 810-811.	1.3	18
48	Shear Modulus of a Polymer Brush. Macromolecules, 2010, 43, 4310-4313.	4.8	10
49	Glass Transition Dynamics and Surface Layer Mobility in Unentangled Polystyrene Films. Science, 2010, 328, 1676-1679.	12.6	429
50	Relaxation Behavior of Poly(methyl methacrylate) at a Water Interface. Journal of Physical Chemistry B, 2010, 114, 3457-3460.	2.6	29
51	Affinity of Polystyrene Films to Hydrogen-Passivated Silicon and Its Relevance to the <i>T</i> _g of the Films. Macromolecules, 2009, 42, 7418-7422.	4.8	144
52	Interfacial Width in Polymer Bilayer Films Prepared by Double-Spin-Coating and Flotation Methods. ACS Applied Materials & Interfaces, 2009, 1, 1856-1859.	8.0	16
53	Polymer/Liquid Interface. Hamon, 2009, 19, 105-108.	0.0	0
54	Nonsolvents Cause Swelling at the Interface with Poly(methyl methacrylate) Films. Langmuir, 2008, 24, 296-301.	3.5	95

#	Article	IF	CITATIONS
55	Entanglement Effect on Film Retention of Poly(methyl methacrylate) in Methanol. Chemistry Letters, 2008, 37, 326-327.	1.3	2
56	Structural analysis for a poly(methyl methacrylate) ultrathin film in water by neutron reflectivity. Journal of Physics: Conference Series, 2007, 83, 012023.	0.4	2
57	Chain Conformation Effects on Molecular Motions at the Surface of Poly(methyl methacrylate) Films. Polymer Journal, 2007, 39, 928-934.	2.7	33
58	Gas Sorption into Surface of Poly(methyl methacrylate) Films at Atmospheric Pressure. Polymer Journal, 2007, 39, 1290-1294.	2.7	2
59	Structure and thermal molecular motion at surface of semi-crystalline isotactic polypropylene films. Polymer, 2005, 46, 429-437.	3.8	28

Analysis of Feeding Activities of Termites by AE Monitoring of Infested Wood.. MOKUZAI HOZON (Wood) Tj ETQq0.00 rgBT LOverlock 1