
Li-hua Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116760/publications.pdf Version: 2024-02-01

Ιι-ΗΠΑ ΖΗΛΝΙ

#	Article	IF	CITATIONS
1	A review of the development of creep age forming: Experimentation, modelling and applications. International Journal of Machine Tools and Manufacture, 2011, 51, 1-17.	6.2	207
2	Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions. International Journal of Mechanical Sciences, 2011, 53, 595-605.	3.6	141
3	Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: Experiments and modeling. International Journal of Plasticity, 2018, 110, 183-201.	4.1	88
4	Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy. Journal of Alloys and Compounds, 2019, 790, 8-19.	2.8	61
5	Effect of pre-deformation on creep age forming of AA2219 plate: Springback, microstructures and mechanical properties. Journal of Materials Processing Technology, 2016, 229, 697-702.	3.1	58
6	Multiple precipitation reactions and formation of Î,'-phase in a pre-deformed Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 28-38.	2.6	58
7	Effect of pre-deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 227-235.	2.6	54
8	Experimental research on creep aging behavior of Al-Cu-Mg alloy with tensile and compressive stresses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 54-62.	2.6	53
9	Stress-relaxation ageing behavior and microstructural evolution under varying initial stresses in an Al–Cu alloy: Experiments and modeling. International Journal of Plasticity, 2020, 127, 102646.	4.1	53
10	Effect of pre-strain on creep aging behavior of 2524 aluminum alloy. Journal of Alloys and Compounds, 2017, 691, 564-571.	2.8	52
11	Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys. International Journal of Plasticity, 2020, 134, 102774.	4.1	50
12	Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy. Journal of Materials Science and Technology, 2020, 46, 107-113.	5.6	48
13	The effects of pre-deformation on the creep aging behavior and mechanical properties of Al-Li-S4 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 496-502.	2.6	45
14	Stress relaxation ageing behaviour and constitutive modelling of a 2219 aluminium alloy under the effect of an electric pulse. Journal of Alloys and Compounds, 2016, 679, 316-323.	2.8	44
15	Solute Sn-induced formation of composite β′/β″ precipitates in Al-Mg-Si alloy. Scripta Materialia, 2018, 155 68-72.	' 2.6	42
16	Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al-Li-S4 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 272-279.	2.6	40
17	Effects of process parameters on mechanical properties and microstructures of creep aged 2124 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 2232-2238.	1.7	34
18	Effect of heating rate on creep aging behavior of Al-Cu-Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 488-497.	2.6	29

LI-HUA ZHAN

#	Article	IF	CITATIONS
19	Void content and interfacial properties of composite laminates under different autoclave cure pressure. Composite Interfaces, 2017, 24, 529-540.	1.3	29
20	Deformation behavior of Al-Cu-Mg alloy during non-isothermal creep age forming process. Journal of Materials Processing Technology, 2018, 255, 26-34.	3.1	26
21	Thermomechanical pretreatment of Al-Zn-Mg-Cu alloy to improve formability and performance during creep-age forming. Journal of Materials Processing Technology, 2021, 293, 117089.	3.1	26
22	Strong stress-level dependence of creep-ageing behavior in Al–Cu–Li alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140381.	2.6	26
23	Formation of a new intermediate phase and its evolution toward Î,' during aging of pre-deformed Al-Cu alloys. Journal of Materials Science and Technology, 2019, 35, 885-890.	5.6	25
24	Study on tensile/compressive asymmetry in creep ageing behavior of Al–Cu alloy under different stress levels. Journal of Alloys and Compounds, 2020, 843, 156157.	2.8	25
25	Effect of pre-deformation on aging creep of Al–Li–S4 alloy and its constitutive modeling. Transactions of Nonferrous Metals Society of China, 2015, 25, 1383-1390.	1.7	23
26	Dependence of creep age formability on initial temper of an Al-Zn-Mg-Cu alloy. Chinese Journal of Aeronautics, 2016, 29, 1445-1454.	2.8	23
27	Strong in-plane anisotropy of creep ageing behavior in largely pre-deformed Al-Cu alloy: Experiments and constitutive modeling. International Journal of Plasticity, 2022, 152, 103245.	4.1	20
28	Reversion of natural ageing and restoration of quick bake-hardening response in Al-Zn-Mg-Cu alloy. Journal of Materials Science and Technology, 2021, 95, 88-94.	5.6	19
29	Anisotropy in creep ageing behavior of textured Al-Cu alloy under different stress states. Materials Characterization, 2020, 168, 110539.	1.9	17
30	Constitutive modeling and springback simulation for 2524 aluminum alloy in creep age forming. Transactions of Nonferrous Metals Society of China, 2015, 25, 3048-3055.	1.7	15
31	A novel method for curing carbon fiber reinforced plastics by high-pressure microwave. Fibers and Polymers, 2016, 17, 2143-2152.	1.1	15
32	Investigation on the creep-age forming of an integrally-stiffened AA2219 alloy plate: experiment and modeling. International Journal of Advanced Manufacturing Technology, 2018, 95, 2015-2025.	1.5	15
33	The effect of moulding process parameters on interlaminar properties of CF/PEEK composite laminates. High Performance Polymers, 2020, 32, 835-841.	0.8	15
34	Enhancing creep formability and comprehensive property in Al–Mg–Si alloy by combinatorial pre-ageing and large pre-deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141967.	2.6	15
35	Stabilizing Al–Mg–Si–Cu alloy by precipitation nano-phase control. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 769, 138513.	2.6	15
36	Effects of surface pre-treatment and adhesive quantity on interface characteristics of fiber metal laminates. Composite Interfaces, 2020, 27, 829-843.	1.3	14

Li-hua Zhan

#	Article	IF	CITATIONS
37	Stress Relaxation Aging Behavior and Constitutive Modelling of AA7150-T7751 under Different Temperatures, Initial Stress Levels and Pre-Strains. Metals, 2019, 9, 1215.	1.0	11
38	Influence of temperature on creep behavior, mechanical properties and microstructural evolution of an Al-Cu-Li alloy during creep age forming. Journal of Central South University, 2021, 28, 2285-2294.	1.2	11
39	Tension-compression asymmetry of stress-relaxation ageing behavior of AA2219 alloy over a wide range of stress levels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141730.	2.6	11
40	Creep Mechanisms of an Al–Cu–Mg Alloy at the Macro- and Micro-Scale: Effect of the S′/S Precipitate. Materials, 2019, 12, 2907.	1.3	10
41	Effect of random vibration processing on void content in composite laminates. Polymer Composites, 2019, 40, 3122-3130.	2.3	10
42	Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate. Journal of Central South University, 2021, 28, 657-668.	1.2	10
43	Anisotropy in creep-ageing behavior of textured Al-Cu-Mg alloy. International Journal of Lightweight Materials and Manufacture, 2018, 1, 40-46.	1.3	9
44	Effect of cure pressure on microstructure and interlaminar shear strength properties of carbon fiber–reinforced plastics with microwave curing. High Performance Polymers, 2018, 30, 1084-1093.	0.8	9
45	Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2020, 30, 2599-2612.	1.7	9
46	Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures. Journal of Central South University, 2020, 27, 1168-1175.	1.2	8
47	Analysis of porosity and mechanical behavior of composite T-joints produced by random vibration-assisted vacuum processing. Iranian Polymer Journal (English Edition), 2020, 29, 759-770.	1.3	8
48	Evaluating random vibration assisted vacuum processing of carbon/epoxy composites in terms of interlaminar shear strength and porosity. Journal of Composite Materials, 2019, 53, 2367-2376.	1.2	7
49	Effect of vibration treatment on interfacial strength of microwave curing process for advanced composites. Composite Interfaces, 2021, 28, 237-253.	1.3	7
50	A unified constitutive model for multiphase precipitation and multi-stage creep ageing behavior of Al-Li-S4 alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 1217-1234.	1.7	7
51	Effects of Electric Pulse Current on the Aging Kinetics of 2219 Aluminum Alloy. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.0	6
52	The Influence of Different External Fields on Aging Kinetics of 2219 Aluminum Alloy. Metals, 2016, 6, 201.	1.0	6
53	Cohesive zone modeling of the autoclave pressure effect on the delamination behavior of composite laminates. Journal of Reinforced Plastics and Composites, 2018, 37, 1468-1480.	1.6	6
54	Significant effect of vibration treatment on microwave curing carbon fiber reinforced plastic. Journal of Reinforced Plastics and Composites, 2020, 39, 373-383.	1.6	6

LI-HUA ZHAN

#	Article	IF	CITATIONS
55	The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites. Journal of Polymer Engineering, 2021, 41, 423-430.	0.6	6
56	Creep aging behavior and performance of Al-Zn-Mg-Cu alloys under different parameters in retrogression aging treatment. Journal of Central South University, 2022, 29, 986-998.	1.2	6
57	Temperature-dependent creep aging behavior of 2A14 aluminum alloy. Journal of Materials Research and Technology, 2022, 19, 1343-1354.	2.6	6
58	Optimization of molding process parameters for CF/PEEK composites based on Taguchi method. Composites and Advanced Materials, 2021, 30, 263498332110018.	0.5	5
59	A Research on the Creep Age Forming of 2524 Aluminum Alloy: Springback, Mechanical Properties, and Microstructures. Advances in Mechanical Engineering, 2014, 6, 707628.	0.8	5
60	Improved creep forming efficiency and retained performance via a novel two-stage creep aging process of Al–Zn–Mg–Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 851, 143581.	2.6	5
61	The Establishment of Surface Roughness as Failure Criterion of Al–Li Alloy Stretch-Forming Process. Metals, 2016, 6, 13.	1.0	4
62	Study on Multi-Step Creep Aging Behavior of Al-Li-S4 Alloy. Metals, 2019, 9, 807.	1.0	4
63	Study of desirable precipitate-strengthening effects on friction-stir welded joints of third-generation Al–Cu–Li alloys. Philosophical Magazine Letters, 2021, 101, 474-483.	0.5	4
64	A unique method for curing composite materials by introducing vibration treatment into the hybrid heating process. Journal of Central South University, 2021, 28, 2961-2972.	1.2	4
65	Creep ageing behaviour assisted by electropulsing under different stresses for Alâ^'Cuâ^'Li alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 1916-1929.	1.7	3
66	Interface Controlled Micro- and Macro-Mechanical Properties of Vibration Processed Carbon Fiber/Epoxy Composites. Polymers, 2021, 13, 2764.	2.0	3
67	Experimental study on complex stress effect for stress relaxation aging behavior of Al-Cu-Li alloy. Journal of Materials Research and Technology, 2022, 18, 3785-3797.	2.6	3
68	Variation of voids and inter-layer shear strength of advanced polymer-matrix composites at different pressures with high-pressure microwave. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501986395.	0.5	2
69	The effect of creep aging on localized corrosion resistance of AA2060 alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 309-319.	0.8	2
70	Effect of Stress Relaxation Aging on Precipitation Kinetics of Al–Cu–Li Alloy. Journal of Materials Engineering and Performance, 2022, 31, 3774-3783.	1.2	2
71	Rheological behavior of continuous roll casting process of aluminum alloy. Central South University, 2005, 12, 629-634.	0.5	1
72	Springback compensation algorithm for tool design in creep age forming of large aluminum alloy plate. , 2013, , .		1

LI-HUA ZHAN

#	Article	IF	CITATIONS
73	A 3D computational meshfree model for the mechanical and thermal buckling analysis of rectangular composite laminated plates with embedded delaminations. Science and Engineering of Composite Materials, 2017, 24, 937-949.	0.6	0
74	Effect of random vibration-assisted vacuum processing on void development and interfacial properties in composites. Journal of Reinforced Plastics and Composites, 2019, 38, 871-881.	1.6	0
75	Analysis of the skin wrinkling in out-of-plane joints of CFRP hat-shaped structure. Journal of Polymer Engineering, 2021, 41, 310-319.	0.6	0
76	Creep Age Forming of Ultra-Large Structural Aluminum Components. , 2022, , 308-319.		0
77	A Study of AA2219 Plate Friction Stir Welding Features with Different Initial Tempers. , 2017, , .		0
78	Study on Monitoring of Stress and Strain during Curing Process of Fiber Metal Laminates. , 2018, , .		0
79	Effect of Heating Rate on Interlaminar Shear Strength Property of Carbon Fiber-reinforced Composite with High-pressure Microwave Curing. , 2018, , .		0
80	Effect of forming process on mechanical and interfacial properties for thermoplastic composite I-stiffened structures. High Performance Polymers, 2022, 34, 282-291.	0.8	0