
Fu-Xing Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/211665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer Single-Nanowire Optical Sensors. Nano Letters, 2008, 8, 2757-2761.	9.1	306
2	Single-nanowire spectrometers. Science, 2019, 365, 1017-1020.	12.6	291
3	Light-Emitting Polymer Single Nanofibers <i>via</i> Waveguiding Excitation. ACS Nano, 2010, 4, 5332-5338.	14.6	129
4	Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science and Applications, 2017, 6, e17061-e17061.	16.6	112
5	Spatial Bandgap Engineering along Single Alloy Nanowires. Journal of the American Chemical Society, 2011, 133, 2037-2039.	13.7	101
6	Metal single-nanowire plasmonic sensors. Optics Letters, 2013, 38, 1826.	3.3	54
7	Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures. Optics Express, 2009, 17, 11230.	3.4	50
8	Singleâ€Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection. Advanced Optical Materials, 2014, 2, 189-196.	7.3	50
9	Freeâ€space coupling of nanoantennas and whisperingâ€gallery microcavities with narrowed linewidth and enhanced sensitivity. Laser and Photonics Reviews, 2015, 9, 682-688.	8.7	48
10	Hybrid photon–plasmon Mach–Zehnder interferometers for highly sensitive hydrogen sensing. Nanoscale, 2015, 7, 924-929.	5.6	48
11	Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluidics and Nanofluidics, 2008, 5, 727-732.	2.2	40
12	Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Science Advances, 2019, 5, eaax7398.	10.3	36
13	Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators. Photonics Research, 2017, 5, B29.	7.0	34
14	Nanoimprinted Polymer Micro/Nanofiber Bragg Gratings for High-Sensitivity Strain Sensing. IEEE Photonics Technology Letters, 2013, 25, 22-24.	2.5	31
15	A wafer-scale synthesis of monolayer MoS ₂ and their field-effect transistors toward practical applications. Nanoscale Advances, 2021, 3, 2117-2138.	4.6	31
16	Polymer micro or nanofibers for optical device applications. Journal of Applied Polymer Science, 2008, 110, 1080-1084.	2.6	28
17	Plasmon-driven nanowire actuators for on-chip manipulation. Nature Communications, 2021, 12, 385.	12.8	28
18	Fusion Spliced Microfiber Closed-Loop Resonators. IEEE Photonics Technology Letters, 2010, 22, 1075-1077.	2.5	21

Fu-Xing Gu

#	Article	IF	CITATIONS
19	Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping. Optics Express, 2012, 20, 8667.	3.4	20
20	Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides. Nanoscale, 2014, 6, 12371-12375.	5.6	19
21	Enhanced Multiphoton Upconversion in Single Nanowires by Waveguiding Excitation. Advanced Optical Materials, 2016, 4, 1174-1178.	7.3	16
22	Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation. Nanotechnology, 2011, 22, 425201.	2.6	13
23	Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation. Applied Physics Letters, 2011, 99, .	3.3	13
24	Longitudinal Lorentz force on a subwavelength-diameter optical fiber. Physical Review A, 2011, 83, .	2.5	11
25	Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire. Scientific Reports, 2016, 6, 33181.	3.3	11
26	Highly Efficient Nonlinear Optical Conversion in Waveguiding GaSe Nanoribbons with Pump Pulses Down to a Femtoâ€Joule Level. Advanced Optical Materials, 2018, 6, 1701012.	7.3	11
27	Ultra-Long Subwavelength Micro/Nanofibers With Low Loss. IEEE Photonics Technology Letters, 2020, 32, 1069-1072.	2.5	11
28	Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation. Optics Express, 2011, 19, 10880.	3.4	10
29	Cavity mode manipulated by single gold nanoparticles. APL Photonics, 2020, 5, .	5.7	10
30	Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications. Scientific Reports, 2015, 5, 17388.	3.3	9
31	Electrospun polymer bottle microresonators for stretchable single-mode lasing devices. Optics Letters, 2018, 43, 3128.	3.3	8
32	Above-Bandgap Surface-Emitting Frequency Conversion in Semiconductor Nanoribbons With Ultralow Continuous-Wave Pump Power. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 480-485.	2.9	7
33	Efficient higher-order nonlinear optical effects in CdSe nanowaveguides. Optics Express, 2018, 26, 6880.	3.4	7
34	Palladium-Coated Silica Microfiber Knots for Enhanced Hydrogen Sensing. IEEE Photonics Technology Letters, 2015, , 1-1.	2.5	6
35	Surface-enhanced fluorescence in metal nanoparticle-doped polymer nanofibers via waveguiding excitation. Applied Physics Letters, 2017, 110, 163101.	3.3	6
36	Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers. Optics Express, 2016, 24, 23361.	3.4	5

Fu-Xing Gu

#	Article	IF	CITATIONS
37	Electrostatic control of photoluminescence from A and B excitons in monolayer molybdenum disulfide. Nanoscale Advances, 2022, 4, 2484-2493.	4.6	5
38	Directâ€Bandgap Bilayer WSe ₂ /Microsphere Monolithic Cavity for Lowâ€Threshold Lasing. Advanced Materials, 2022, 34, e2106502.	21.0	4
39	One-Drop Self-Assembly of Ultra-Fine Second-Order Organic Nonlinear Optical Crystal Nanowires. Nanoscale Research Letters, 2019, 14, 269.	5.7	3
40	Stable and Tunable Optoelectronic Oscillator With External Stimulated Brillouin Beat Note Injection. IEEE Photonics Technology Letters, 2021, 33, 1085-1088.	2.5	3
41	Nonlinear Optical Conversion: Highly Efficient Nonlinear Optical Conversion in Waveguiding GaSe Nanoribbons with Pump Pulses Down to a Femtoâ€Joule Level (Advanced Optical Materials 5/2018). Advanced Optical Materials, 2018, 6, 1870021.	7.3	1
42	Passive near-field optical scanning imaging based on semiconductor nanowire/tapered microfiber probe. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 044201.	0.5	1
43	Thermal-mechanical-photo-activation effect on silica micro/nanofiber surfaces: origination, reparation and utilization. Optics Express, 2022, 30, 22755.	3.4	1
44	Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides. , 2015, , .		0
45	Optical Auto-correlators Using Single GaSe Nanoribbons for Femto-Joule Ultrafast Pulses Characterization. , 2018, , .		0
46	High-Efficient Generation of Nonlinear Optical Effects in Semiconductor Nanowaveguides. Lecture Notes in Electrical Engineering, 2021, , 37-39.	0.4	0
47	Mode modulation in microbottle cavities and its sensing applications. , 2019, , .		0
48	Monolayer lasing from photoactivation-enhanced photoluminescence at room temperature. , 2020, , .		0