Maria Pompeiano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116295/publications.pdf

Version: 2024-02-01

623574 642610 24 899 14 23 citations g-index h-index papers 24 24 24 743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel localizations of TRPC5 channels suggest novel and unexplored roles: A study in the chick embryo brain. Developmental Neurobiology, 2021, , .	1.5	1
2	Melanin-concentrating hormone (MCH) neurons in the developing chick brain. Brain Research, 2018, 1700, 19-30.	1.1	3
3	Optimized CUBIC protocol for 3D imaging of chicken embryos at single-cell resolution. Development (Cambridge), 2017, 144, 2092-2097.	1.2	35
4	Activation of state-regulating neurochemical systems in newborn and embryonic chicks. Neuroscience, 2016, 339, 219-234.	1.1	3
5	Chick embryos have the same pattern of hypoxic lowerâ€brain activation as fetal mammals. Developmental Neurobiology, 2016, 76, 64-74.	1.5	3
6	Early Expression of Hypocretin/Orexin in the Chick Embryo Brain. PLoS ONE, 2014, 9, e106977.	1.1	10
7	Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos. Developmental Neurobiology, 2014, 74, 1030-1037.	1.5	8
8	Design and Implementation of a Wireless In-Ovo EEG/EMG Recorder. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 832-840.	2.7	9
9	Fos and FRA protein expression in rat precerebellar structures during the Neurolab Space Mission. Brain Research Bulletin, 2003, 62, 203-221.	1.4	8
10	Fos and FRA protein expression in rat nucleus paragigantocellularis lateralis during different space flight conditions. Brain Research Bulletin, 2002, 59, 65-74.	1.4	4
11	Decreased apoptosis in proliferative and postmitotic regions of the caspase 3-deficient embryonic central nervous system. Journal of Comparative Neurology, 2000, 423, 1-12.	0.9	80
12	Onset of apoptotic DNA fragmentation can precede cell elimination by days in the small intestinal villus. Cell Death and Differentiation, 1998, 5, 702-709.	5.0	19
13	NGFI-A expression in the rat brain after sleep deprivation. Molecular Brain Research, 1997, 46, 143-153.	2.5	40
14	Sleep-waking changes after c-fos antisense injections in the medial preoptic area. NeuroReport, 1995, 6, 801-805.	0.6	38
15	Sleep deprivation and <i>câ€fos</i> expression in the rat brain. Journal of Sleep Research, 1995, 4, 92-106.	1.7	87
16	In vivo antisense approaches to the role of immediate early gene expression in the brain. Regulatory Peptides, 1995, 59, 151-162.	1.9	21
17	Immediateâ€early genes in spontaneous wakefulness and sleep: expression of <i>câ€fos</i> and NGFIâ€A mRNA and protein. Journal of Sleep Research, 1994, 3, 80-96.	1.7	137
18	The locus coeruleus and immediate-early genes in spontaneous and forced wakefulness. Brain Research Bulletin, 1994, 35, 589-596.	1.4	43

#	Article	IF	CITATIONS
19	Differential effects of 5,7-dihydroxytryptamine-induced serotoninergic degeneration on 5-HT1A receptors and 5-HT uptake sites in the rat brain. Journal of Chemical Neuroanatomy, 1994, 7, 65-73.	1.0	21
20	Modulation of desynchronized sleep through microinjection of ?1-adrenergic agonists and antagonists in the dorsal pontine tegmentum of the cat. Pflugers Archiv European Journal of Physiology, 1992, 422, 273-279.	1.3	18
21	Suppression of desynchronized sleep through microinjection of the ? 2-adrenergic agonist clonidine in the dorsal pontine tegmentum of the cat. Pflugers Archiv European Journal of Physiology, 1991, 418, 512-518.	1.3	38
22	Changes in pontine muscarinic receptor binding during sleep-waking states in the rat. Neuroscience Letters, 1990, 109, 347-352.	1.0	10
23	Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Research, 1990, 524, 139-143.	1.1	232
24	Modulation of desynchronized sleep through microinjection of ?-adrenergic agonists and antagonists in the dorsal pontine tegmentum of the cat. Pflugers Archiv European Journal of Physiology, 1989, 415, 142-149.	1.3	31